The acceleration of an object depends directly upon the net force acting upon the object, and inversely upon the mass of the object. As the force acting upon an object is increased, the acceleration of the object is increased. As the mass of an object is increased, the acceleration of the object is decreased.
Answer:
2144 rad/s
Explanation:
R1 = R
ω1 = 536 rad/s
R2 = R/2
ω2 = ?
Mass is M
By use of angular momentum remains constant if no external force is acting on the body.
I1 ω1 = I2 ω2
The moment of inertia of solid sphere is 12/5 MR^2
So, 2/5 x M R^2 x 536 = 2/5 x M (R/2)^2 x ω2
536 = ω2 / 4
ω2 = 2144 rad/s
Answer: Gravity slows the ball down as it goes up and eventually stops it from going up and starts to pull it back down to earth.
Explanation:
Explanation:
<em>For</em><em>ce</em><em> </em><em>per</em><em> </em><em>uni</em><em>t</em><em> </em><em>area</em><em> </em><em>is</em><em> </em><em>call</em><em>ed</em><em> </em><em>Pres</em><em>sure</em><em>.</em>
No, aluminum has a density near 2.7 g/cm^3
<span>7.8 g/cm^3 is near the density of iron (or in the case of a fork, steel).
this is it
</span>