Answer:
The focal length fe of the eyepiece is <em>2.86 cm</em>
Explanation:
Since we are given the telescope's magnification and the length of the tube, we can use the expressions
<em>M = f_o/fe (1)</em> and
<em>l = f_o + fe (2)</em>
where
- M is the telescope's magnification
- l is the length of the tube
- fe is the focal length of the eye-piece
Rearranging equation (2) to make f_o the subject of the formula, we get
<em>f_o = l - fe</em>
Substituting the above equation into equation (1) we get
<em>M = (l - fe)/fe ⇒ fe = l/(M +1)</em>
<em> ⇒ fe = 60/(20 + 1)</em>
⇒ <em>fe = 2.86 cm</em>
The space between the cars closes at (70+65)=135 km/hr. They collide in (405/135)=3 hours after they start moving. In 3 hours, the canary covers (100km/hr x 3)= 300 km.
Answer:
Time= 6.12*10^4s
mass flow rate m=0.98kg/s
Explanation:
Given
Volume= 60m^3
diamter= 2.5cm= 0.025m
radius= 0.0125m
area A= πr^2
area A= 3.142*0.0125^2
area A= 4.9*10^-4m^2
the velocity of the flow 2m/s
<u>volume flow rate </u>
V=vA
V=2* 4.9*10^-4
V=9.82*10^-4 m^3/s
<u>Time taken to fill the pool</u>
time= volume/volume flow rate
time= 60/9.82*10^-4
time= 6.12*10^4s
<u>Mass flow rate </u>
m= density *volume flow rate
Assuming the density of water to be 997kg/m^3
m= 997*9.82*10^-4
m=0.98kg/s
Answer:
1.07 m
Explanation:
x = Compression of the spring
k = Spring constant = 53 N/m
Initial length = 18 cm
P = Kinetic energy
K = Kinetic energy
At the lowest point of the mass the energy conservation is as follows

At its lowest position the mark on the ruler will be

The spring line will end up at 1.07 m
Answer:
F = 1.63 x 10⁻⁹ N
Explanation:
Complete question is as follows:
The diagram below shows two bowling balls, A and B, each having a mass of 7.0 kg, placed 2.00 m apart between their centers. Find the magnitude of Gravitational Force?
Answer:
The gravitational force is given by Newton's Gravitational Law as follows:
F = Gm₁m₂/r²
where,
F = Gravitational Force = ?
G = Universal Gravitational Constant = 6.67 x 10⁻¹¹ N.m²/kg²
m₁ = m₂ = mass of each ball = 7 kg
r = distance between balls = 2 m
Therefore,
F = (6.67 x 10⁻¹¹ N.m²/kg²)(7 kg)(7 kg)/(2 m)²
<u>F = 1.63 x 10⁻⁹ N</u>