Answer:

Explanation:
Given that:
- Area of the plate of capacitor 1= Area of the plate of capacitor 2=A
- separation distance of capacitor 2,

- separation distance of capacitor 1,

- quantity of charge on capacitor 2,

- quantity of charge on capacitor 1,

We know that the Capacitance of a parallel plate capacitor is directly proportional to the area and inversely proportional to the distance of separation.
Mathematically given as:
.....................................(1)
where:
k = relative permittivity of the dielectric material between the plates= 1 for air

From eq. (1)
For capacitor 2:

For capacitor 1:

![C_1=\frac{1}{2} [ \frac{k.\epsilon_0.A}{d}]](https://tex.z-dn.net/?f=C_1%3D%5Cfrac%7B1%7D%7B2%7D%20%5B%20%5Cfrac%7Bk.%5Cepsilon_0.A%7D%7Bd%7D%5D)
We know, potential differences across a capacitor is given by:
..........................................(2)
where, Q = charge on the capacitor plates.
for capacitor 2:


& for capacitor 1:


![V_1=8\times [\frac{Q.d}{k.\epsilon_0.A}]](https://tex.z-dn.net/?f=V_1%3D8%5Ctimes%20%5B%5Cfrac%7BQ.d%7D%7Bk.%5Cepsilon_0.A%7D%5D)

Answer: 56.72 ft/s
Explanation:
Ok, initially we only have potential energy, that is equal to:
U =m*g*h
where g is the gravitational acceleration, m the mass and h the height.
h = 50ft and g = 32.17 ft/s^2
when the watermelon is near the ground, all the potential energy is transformed into kinetic energy, and the kinetic energy can be written as:
K = (1/2)*m*v^2
where v is the velocity.
Then we have:
K = U
m*g*h = (m/2)*v^2
we solve it for v.
v = √(2g*h) = √(2*32.17*50) ft/s = 56.72 ft/s
Answer:
<em>a) 0.72 V</em>
<em>b) 19.2 mA</em>
<em>c) 2.304 Watts</em>
Explanation:
A transformer is used to step-up or step-down voltage and current. It uses the principle of electromagnetic induction. When the primary coil is greater than the secondary coil, the it is a step-down transformer, and when the primary coil is less than the secondary coil, the it is a step-up transformer.
number of primary turns =
= 500 turns
input voltage =
= 120 V
number of secondary turns =
= 3 turns
output voltage =
= ?
using the equation for a transformer

substituting values, we have


= 360/500 =<em> 0.72 V</em>
<em></em>
b) by law of energy conservation,

where
= input current = ?
= output voltage = 3.2 A
= output voltage = 0.72 V
= input voltage = 120 V
substituting values, we have
120
= 3.2 x 0.72
120
= 2.304
= 2.304/120 = 0.0192 A
= <em>19.2 mA</em>
<em></em>
c) power input = 
==> 0.0192 x 120 = <em>2.304 Watts</em>
It is C because less than one percent of water is fresh water
<span>Maritime tropical air masses develop over warm waters present in the tropics and Gulf of Mexico, where heat and moisture are carried to to the overlying air from the water below.
</span><span>
</span><span> Tropical air masses having northward movement carry warm moist air into the United States, thus increasing the potential for condensation. Generally the southern states experience tropical air masses. But, in winter season, southerly winds ahead of migrating cyclones <span>sometimes transport tropical air mass towards north.
</span></span><span><span>
</span></span><span><span>The counterclockwise winds related to northern hemisphere mid latitude cyclones play an important role in the movement air masses, carrying warm moist air towards north ahead of a low while dragging colder and drier air towards south.</span></span>