Answer:
7 L of H₂.
Explanation:
The balanced equation for the reaction is given below:
2H₂ + O₂ —> 2H₂O
From the balanced equation above,
1 L of O₂ required 2 L of H₂.
Finally, we shall determine the volume of H₂ required to react with 3.5 L of O₂. This can be obtained as follow:
From the balanced equation above,
1 L of O₂ required 2 L of H₂.
Therefore, 3.5 L of O₂ will require
= 3.5 × 2 = 7 L of H₂.
Thus, 7 L of H₂ is required to for the reaction.
Both the dipole-dipole and hydrogen are essentially same because they result form formation of partial negative and positive charges on the atoms constituting a given molecule. in such molecule, one atom is more electronegative than the other and therefore pulls the shared electrons more to itself than the other atom. the atom that pulls a pair of electrons more to itself becomes partially negatively charged whereas the other atom becomes partially positively charge. the weak negative charges on one molecule attracts weak positive charge on the other molecule creating intermolecular forces referred to as dipole-dipole bonds. Hydrogen bonds form in the same manner they are stronger than typical dipole-dipole bonds. so according to the explanation above D is the correct answer.
Answer:
0.295 mol/L
Explanation:
Given data:
Volume of solution = 3.25 L
Mass of BaBr₂ = 285 g
Molarity of solution = ?
Solution:
Molarity is used to describe the concentration of solution. It tells how many moles are dissolve in per litter of solution.
Formula:
Molarity = number of moles of solute / L of solution
Number of moles of solute:
Number of moles = mass/ molar mass
Molar mass of BaBr₂ = 297.1 g/mol
Number of moles = 285 g/ 297.1 g/mol
Number of moles= 0.959 mol
Molarity:
M = 0.959 mol / 3.25 L
M = 0.295 mol/L