At the same temperature, steam burns are often more severe that water burns because of water's high HEAT OF VAPORIZATION.
Water possesses high heat of vaporization. The heat of vaporization refers to the amount of heat that is needed to convert a unit mass of water to gas. After getting to the boiling point, a lot of heat is still needed to be absorbed by a boiling water before it can be converted to the gaseous form. Thus, the heat that is inherent in the steam is greater than that which is found in the boiling water, that is why the steam causes more damages.
Covalent network. <span>A solid that is extremely hard, that has a very high melting point, and that will not conduct electricity either as a solid or when molten is held together by a continuous three-dimensional network of covalent bonds. Examples include diamond, quartz (SiO </span><span>2 </span>), and silicon carbide (SiC). The electrons are constrained in pairs to a region on a line between the centers of pairs of atoms.<span>
<span /></span>
A. False. If it is high tide in one place on Earth, the place exactly opposite to it will also have a <em>high</em> tide.
The gravitational attraction of the Moon and the inertia of the oceans cause <em>two tidal bulges </em>on opposite sides of the Earth.
B. True. Cassini used flybys of Venus, Earth and Jupiter as slingshots to reach Saturn.
C. True. The whole solar system moves around the galaxy.
D. True. If a planet’s gravity is not strong enough, the molecules in its atmosphere will have enough kinetic energy to escape into space.
E. False. The <em>mass of an object is constant</em>, but its <em>weight changes</em> according to the gravity of the planet.
F. False. To find the mass of an object, <em>divide</em> its weight by gravity.
or weight = mass × gravity
∴ <em>Mass = weight/gravity
</em>
The s orbitals are not symmetrical in shape is a FALSE statement.
An s orbital is so symmetric, more specifically spherically symmetric that it looks the same from all directions.
- The atomic orbitals in the atoms of elements differ in shape.
In essence, the electrons they describe have varying probability distributions around the nucleus. The spherical symmetry of s orbitals is evident in the fact that all orbitals of a given shell in the hydrogen atom have the same energy.
- All s orbitals are spherically symmetrical. Put simply, an electron that occupies an s orbital can be found with the same probability at any orientation (at a distance) from the nucleus.
The s orbitals are therefore represented by a spherical boundary surface which is a surface which captures a high proportion of the electron density.
Read more:
brainly.com/question/5087295