Answer:
The ratio of f at the higher temperature to f at the lower temperature is 5.356
Explanation:
Given;
activation energy, Ea = 185 kJ/mol = 185,000 J/mol
final temperature, T₂ = 525 K
initial temperature, T₁ = 505 k
Apply Arrhenius equation;
![Log(\frac{f_2}{f_1} ) = \frac{E_a}{2.303 \times R} [\frac{1}{T_1} -\frac{1}{T_2} ]](https://tex.z-dn.net/?f=Log%28%5Cfrac%7Bf_2%7D%7Bf_1%7D%20%29%20%3D%20%5Cfrac%7BE_a%7D%7B2.303%20%5Ctimes%20R%7D%20%5B%5Cfrac%7B1%7D%7BT_1%7D%20-%5Cfrac%7B1%7D%7BT_2%7D%20%5D)
Where;
is the ratio of f at the higher temperature to f at the lower temperature
R is gas constant = 8.314 J/mole.K
![Log(\frac{f_2}{f_1} ) = \frac{E_a}{2.303 \times R} [\frac{1}{T_1} -\frac{1}{T_2} ]\\\\Log(\frac{f_2}{f_1} ) = \frac{185,000}{2.303 \times 8.314} [\frac{1}{505} -\frac{1}{525} ]\\\\Log(\frac{f_2}{f_1} ) = 0.7289\\\\\frac{f_2}{f_1} = 10^{0.7289}\\\\\frac{f_2}{f_1} = 5.356](https://tex.z-dn.net/?f=Log%28%5Cfrac%7Bf_2%7D%7Bf_1%7D%20%29%20%3D%20%5Cfrac%7BE_a%7D%7B2.303%20%5Ctimes%20R%7D%20%5B%5Cfrac%7B1%7D%7BT_1%7D%20-%5Cfrac%7B1%7D%7BT_2%7D%20%5D%5C%5C%5C%5CLog%28%5Cfrac%7Bf_2%7D%7Bf_1%7D%20%29%20%3D%20%5Cfrac%7B185%2C000%7D%7B2.303%20%5Ctimes%208.314%7D%20%5B%5Cfrac%7B1%7D%7B505%7D%20-%5Cfrac%7B1%7D%7B525%7D%20%5D%5C%5C%5C%5CLog%28%5Cfrac%7Bf_2%7D%7Bf_1%7D%20%29%20%3D%200.7289%5C%5C%5C%5C%5Cfrac%7Bf_2%7D%7Bf_1%7D%20%20%3D%2010%5E%7B0.7289%7D%5C%5C%5C%5C%5Cfrac%7Bf_2%7D%7Bf_1%7D%20%20%3D%205.356)
Therefore, the ratio of f at the higher temperature to f at the lower temperature is 5.356
Answer: D i think
Explanation: Im sorry if it is wrong lol!! I pretty sure thats the answer...
Q6. 3
Q7. 3
Q8. pH
Q18. 3
Q19. 3
Q20. 4
Hope this helped??
Answer:
B.0.2 J/g°C
Explanation:
From the attached picture;
- Heat attained in the solid phase is 200 Joules
- Change in temperature is 50°C ( from 0°C to 50°C)
- Mass of the solid is 20 g
We are required to determine the specific heat capacity of the substance;
- We need to know that Quantity of heat is given by the product of mass,specific heat capacity and change in temperature.
- That is; Q = mcΔT
Rearranging the formula;
c = Q ÷ mΔT
Therefore;
Specific heat = 200 J ÷ (20 g × 50°c)
= 0.2 J/g°C
Thus, the specific heat of the solid is 0.2 J/g°C