Answer:
Hiya there!
Explanation:
Both fission and fusion are nuclear reactions that produce energy, but the applications are not the same. Fission is the splitting of a heavy, unstable nucleus into two lighter nuclei, and fusion is the process where two light nuclei combine together releasing vast amounts of energy.
For example, uranium can fission to yield strontium and krypton. Fusion joins atomic nuclei together. The element formed has more neutrons or more protons than that of the starting material. For example, hydrogen and hydrogen can fuse to form helium.
<em><u>Hope this helped!</u></em> :D
Credit sourced from "nuclear.duke-energy.com, thoughtco.com"
The process by which green plants and some other organisms use sunlight to synthesize foods from carbon dioxide and water.
Molar mass of C: 12.011 g/mol
The equation says C20, which means there are 20 carbon atoms in each molecule of Vitamin A. So, we multiply 12.011 by 20 to get 240.22 g/mol carbon.
Molar mass of H: 1.0079 g/mol
The equation says C30, which means there are 30 hydrogen atoms in each molecule of Vitamin A. So, we multiply 1.0079 by 30 to get 30.237 g/mol hydrogen.
Molar mass of O: 15.999 g/mol
The equation says O without a number, which means there is only one oxygen atom in each molecule of Vitamin A. So, we leave O at 15.999 g/mol.
Then, just add it up:
240.22 g/mol C + 30.237 g/mol H + 15.999 g/mol O = 286.456 g/mol C20H30O
So, the molar mass of Vitamin A, C20H30O, is approximately 286.5 g/mol.
Answer:
positive force → balanced force → negative force
Explanation:
np
•3.9g of ammonia
•molar mass of ammonia = 17.03g/mol
1st you have to covert grams to moles by dividing the mass of ammonia with the molar mass:
(3.9 g)/ (17.03g/mol) = 0.22900763mols
Then convert the moles to molecules by multiplying it with Avogadro’s number:
Avogadro’s number: 6.022 x 10^23
0.22900763mols x (6.022 x 10^23 molecs/mol)
= 1.38 x 10^23 molecules