This is an incomplete question, here is a complete question.
The Henry's law constant for oxygen dissolved in water is 4.34 × 10⁹ g/L.Pa at 25⁰C.If the partial pressure of oxygen in air is 0.2 atm, under atmospheric conditions, calculate the molar concentration of oxygen in air-saturated and oxygen saturated water.
Answer : The molar concentration of oxygen is, 
Explanation :
As we know that,

where,
= molar solubility of
= ?
= partial pressure of
= 0.2 atm = 1.97×10⁻⁶ Pa
= Henry's law constant = 4.34 × 10⁹ g/L.Pa
Now put all the given values in the above formula, we get:


Now we have to molar concentration of oxygen.
Molar concentration of oxygen = 
Therefore, the molar concentration of oxygen is, 
Answer:
carbon
Explanation:
Carbon forms compounds that make up about 18 percent of all the matter in living things. The processes by which organisms consume carbon and return it to their surroundings constitute the carbon cycle.
Answer:
Factors that cause population growth include increased food production, improved health care services, immigration and high birth rate. These factors have led to overpopulation, which has more negative effects than positive impacts. The world population today is over 7 billion and the number is increasing with each passing year.
Hope this helps!
Answer:
Grade A is the best percentage that is developing, proficient, exceeding, and emerging
Answer:
C₆H₁₂O₆ and O₂ are reactant.
CO₂ and H₂O are products.
C₆H₁₂O₆ + 6O₂ → 6CO₂ + 6H₂O + ATP
Explanation:
There are two types of respiration:
1. Aerobic respiration
2. Anaerobic respiration
Aerobic respiration
It is the breakdown of glucose molecule in the presence of oxygen to yield large amount of energy. Water and carbon dioxide are also produced as a byproduct.
Glucose + oxygen → carbon dioxide + water + 38ATP
Anaerobic Respiration
It is the breakdown of glucose molecule in the absence of oxygen and produce small amount of energy. Alcohol or lactic acid and carbon dioxide are also produced as byproducts.
Glucose→ lactic acid/alcohol + 2ATP + carbon dioxide
This process use respiratory electron transport chain as electron acceptor instead of oxygen. It is mostly occur in prokaryotes. Its main advantage is that it produce energy (ATP) very quickly as compared to aerobic respiration.
Steps involve in anaerobic respiration are:
Glycolysis
Glycolysis is the first step of both aerobic and anaerobic respiration. It involve the breakdown of one glucose molecule into pyruvate and 2ATP.
Fermentation
The second step of anaerobic respiration is fermentation. It involve the fermentation of pyruvate into lactic acid or alcohol depending upon the organism in which it is taking place. There is no ATP produced, however carbon dioxide is released in this step.