Answer:
Explanation:
⁵⁷Co₂₇ + e⁻¹ = ²⁷Fe₂₆
mass defect = 56.936296 + .00055 - 56.935399
= .001447 u
equivalent energy
= 931.5 x .001447 MeV
= 1.3479 MeV .
= 1.35 MeV
energy of gamma ray photons = .14 + .017
= .157 MeV .
Rest of the energy goes to neutrino .
energy going to neutrino .
= 1.35 - .157
= 1.193 MeV.
The question is incomplete! The complete question along with answer and explanation is provided below.
Question:
A 0.5 kg mass moves 40 centimeters up the incline shown in the figure below. The vertical height of the incline is 7 centimeters.
What is the change in the potential energy (in Joules) of the mass as it goes up the incline?
If a force of 1.0 N pulled up and parallel to the surface of the incline is required to raise the mass back to the top of the incline, how much work is done by that force?
Given Information:
Mass = m = 0.5 kg
Horizontal distance = d = 40 cm = 0.4 m
Vertical distance = h = 7 cm = 0.07 m
Normal force = Fn = 1 N
Required Information:
Potential energy = PE = ?
Work done = W = ?
Answer:
Potential energy = 0.343 Joules
Work done = 0.39 N.m
Explanation:
The potential energy is given by
PE = mgh
where m is the mass of the object, h is the vertical distance and g is the gravitational acceleration.
PE = 0.5*9.8*0.07
PE = 0.343 Joules
As you can see in the attached image
sinθ = opposite/hypotenuse
sinθ = 0.07/0.4
θ = sin⁻¹(0.07/0.4)
θ = 10.078°
The horizontal component of the normal force is given by
Fx = Fncos(θ)
Fx = 1*cos(10.078)
Fx = 0.984 N
Work done is given by
W = Fxd
where d is the horizontal distance
W = 0.984*0.4
W = 0.39 N.m
Answer:
The magnitude of the flux of electric field through a square of surface area is zero.
Explanation:

It is given that square box is parallel to yz-plane which has normal vector perpendicular to plane in x-direction. Angle between normal vector of area and electric field is 90°. Substituting in (1)

All of the elements in a period have the same number of atomic orbitals. For example, every element in the top row (the first period) has one orbital for its electrons. All of the elements in the second row (the second period) have two orbitals for their electrons. As you move down the table, every row adds an orbital.