The magnitude of acceleration is (change in speed) / (time for the change).
Change in speed = (speed at the end) - (speed at the beginning) =
(16 m/s) - (0) = 16 m/s .
Time for the change = 4 s .
Magnitude of acceleration = (16 m/s) / (4 s) = 4 m/s per sec = 4 m/s² .
In electricity, the most famous and basic equation is the Ohm's Law which relates the parameters voltage, current and resistance. One form of this law as written in equation is V = IR, where V is the voltage in volts, I is the current in amperes and R is the resistance in ohms. These parameters depends in the arrangements, whether it's series or parallel.
In a series connection, the voltage is greater across a high-resistance resistor. Therefore, the voltage is much greater for the 20-ohm resistor. However,if it is a parallel circuit, the voltage is just the same for both resistors.
We need more evidence to be provided
Answer:
All of the above are true.
Explanation:
(a). true
whenever charge particle move back and froth from its mean position then it will produce oscillating electric and magnetic fields, . so an em wave can be obtain by accelerating charge
(b). true
the electric field and the magnetic field have vibrations in the perpendicular direction along the motion of the wave so electromagnetic wave is a transverse wave. therefore, the EM wave is a Transverse wave
(c) true .
The Electromagnetic wave consists of the two mutually perpendicular electric and magnetic fields and also both fields are perpendicular to the direction of propagation of the wave.
(d) true .
An electromagnetic wave carry energy through vacuum with a speed of
so , all of the above are true.
The ratio of the turns to the voltage should be equal
i.e: 200/120 = t/12
so the secondary coil should have 20 turns