The light can definitely change the mystery material. This can occur through a change in temperature or color (option C).
A material is affected by light mainly if the material absorbs the light. Based on the chart, we know this mystery material can absorb two types of light:
Moreover, this phenomenon can lead to two main changes:
- Change in temperature: Light affects materials by increasing their temperature of these. A common example is the way the temperature of an object increases if it is exposed to sunlight.
- Change in color: Some materials react to light by changing their color.
Based on this, the material can change its color or temperature.
Note: This question is incomplete; here is the missing part:
A. Yes, but the mystery material can change in only one way, such as by getting warm, because all the light that a material absorbs will affect that material in the same way.
B. No. The mystery material can’t change because the light is not a physical thing. Light cannot change physical things like the mystery material.
C. Yes and the mystery material can change in one or two different ways, such as by getting warm and/or changing color, because different types of light can cause different changes to a material when they are absorbed.
D. There is no way to know whether the mystery material will change or not.
Learn more about sunlight in: brainly.com/question/1603783
D. According to the hierarchy of needs the body and mind must be taken care of first and foremost.
Answer:
M.A = load/ effort
1200N/400N
= 3
velocity ratio= radius of wheel/radius of Axle
40cm/10cm
=4
efficiency= 3/4*100
75%
Answer:
f1= -350cm or -3.5m
f2= 22.1cm or 0.221m
Explanation:
A person is nearsighted when the person's far point is less than infinity. A diverging lens is normally used to correct this eye defect. A diverging lens has a negative focal length as seen in the solution attached.
Farsightedness is when a person's near point is farther than 25cm. This eye defect is corrected using a converging lens. The focal length of a converging lens is positive. This is evident in the solution attached. The near point is also referred to as the least distance of distinct vision.
Answer:
6 m/s is the missing final velocity
Explanation:
From the data table we extract that there were two objects (X and Y) that underwent an inelastic collision, moving together after the collision as a new object with mass equal the addition of the two original masses, and a new velocity which is the unknown in the problem).
Object X had a mass of 300 kg, while object Y had a mass of 100 kg.
Object's X initial velocity was positive (let's imagine it on a horizontal axis pointing to the right) of 10 m/s. Object Y had a negative velocity (imagine it as pointing to the left on the horizontal axis) of -6 m/s.
We can solve for the unknown, using conservation of momentum in the collision: Initial total momentum = Final total momentum (where momentum is defined as the product of the mass of the object times its velocity.
In numbers, and calling
the initial momentum of object X and
the initial momentum of object Y, we can derive the total initial momentum of the system: 
Since in the collision there is conservation of the total momentum, this initial quantity should equal the quantity for the final mometum of the stack together system (that has a total mass of 400 kg):
Final momentum of the system: 
We then set the equality of the momenta (total initial equals final) and proceed to solve the equation for the unknown(final velocity of the system):
