Remember Coulomb's law: the magnitude of the electric force F between two stationary charges q₁ and q₂ over a distance r is

where k ≈ 8,98 × 10⁹ kg•m³/(s²•C²) is Coulomb's constant.
8.1. The diagram is simple, since only two forces are involved. The particle at Q₂ feels a force to the left due to the particle at Q₁ and a downward force due to the particle at Q₃.
8.2. First convert everything to base SI units:
0,02 µC = 0,02 × 10⁻⁶ C = 2 × 10⁻⁸ C
0,03 µC = 3 × 10⁻⁸ C
0,04 µC = 4 × 10⁻⁸ C
300 mm = 300 × 10⁻³ m = 0,3 m
600 mm = 0,6 m
Force due to Q₁ :

Force due to Q₃ :

8.3. The net force on the particle at Q₂ is the vector

Its magnitude is

and makes an angle θ with the positive horizontal axis (pointing to the right) such that

where we subtract 180° because
terminates in the third quadrant, but the inverse tangent function can only return angles between -90° and 90°. We use the fact that tan(x) has a period of 180° to get the angle that ends in the right quadrant.
Answer:
During <u>winter (late December/early January)</u> the Earth is closest to the Sun and during <u>summer (late June/early July)</u> the Earth is farthest from the Sun.
Explanation:
In the northern hemisphere, the earth usually comes closer to the sun during the time of winter season, mostly in late December or early January.
On the other hand, the earth is farthest from the sun during the time of summer season, mostly in late June or early July.
When the earth is closer to the sun, during the winter, it is comparatively cold. It is due to the absorption of a lesser amount of incoming solar radiation. The tilt of the earth is also responsible for this low temperature.
But, when the earth is farthest from the sun, during the summer, it is comparatively hot. It is due to the absorption of a large amount of incoming solar radiation.
Hi there!!! I hope i'm not late! i'm not sure but i think it might be letter:
B. F and A
If i'm wrong please correct me and explain so that I and everyone else know in the future...Thank you and sorry if i wasn't much help!!!
Have a Brainly Day!!!
Answer:
The time taken for the car to stop is 5.43 s.
The initial velocity of the car is 108.6 ft/s
Explanation:
The following data were obtained from the question:
Acceleration (a) = –20 ft/s² (since the car is coming to rest)
Distance travalled (s) = 295 ft
Final velocity (v) = 0 ft/s
Time taken (t) =?
Initial velocity (u) =?
Next, we shall determine the initial velocity of the car as shown below:
v² = u² + 2as
0² = u² + (2 × –20 × 295)
0 = u² + (–11800)
0 = u² – 11800
Collect like terms
0 + 11800 = u²
11800 = u²
Take the square root of both side
u = √11800
u = 108.6 ft/s
Therefore, the initial velocity of the car is 108.6 ft/s.
Finally, we shall determine the time taken for the car to stop as shown below:
Acceleration (a) = –20 ft/s² (since the car is coming to rest)
Final velocity (v) = 0 ft/s
Initial velocity (u) = 108.6 ft/s
Time taken (t) =?
v = u + at
0 = 108.6 + (–20 × t)
0 = 108.6 + (–20t)
0 = 108.6 – 20t
Collect like terms
0 – 108.6 = – 20t
– 108.6 = – 20t
Divide both side by –20
t = – 108.6 / –20
t = 5.43 s
Therefore, the time taken for the car to stop is 5.43 s.
Answer:
a binary phase or binary compound is a chemical compound containing two different elements. Some binary phase compounds are molecular, e.g. carbon tetrachloride. More typically binary phase refers to extended solids.