I think its hexometer because hex means 6.
<h3>Given:</h3>
<h3>To find:</h3>
The size of the unknown angle "x"
<h3>Solution:</h3>
The given polygon is a Pentagon so the sum of interior angle will be,

n means the number of sides
Let's substitute the values according to the formula.


Now, we can find the sum of one interior angle.

n means the number of sides.
Let's substitute the values according to the formula.


<u>Therefore</u><u>,</u><u> </u><u>the</u><u> </u><u>size</u><u> </u><u>of</u><u> </u><u>the</u><u> </u><u>unknown</u><u> </u><u>angle</u><u> </u><u>"</u><u>x"</u><u> </u><u>is</u><u> </u><u>1</u><u>0</u><u>8</u><u>°</u>
Answer:
Area segment = 3/2 π - (9/4)√3 units²
Step-by-step explanation:
∵ The hexagon is regular, then it is formed by 6 equilateral Δ
∵ Area segment = area sector - area Δ
∵ Area sector = (Ф/360) × πr²
∵ Ф = 60° ⇒ central angle of the sector
∵ r = 3
∴ Area sector = (60/360) × (3)² × π = 3/2 π
∵ Area equilateral Δ = 1/4 s²√3
∵ The length of the side of the Δ = 3
∴ Area Δ = 1/4 × (3)² √3 = (9/4)√3
∴ Area segment = 3/2 π - (9/4)√3 units²