Variable
Step-by-step explanation:
Answer:
A
Step-by-step explanation:
Since cosine is positive and sine is negative that puts θ in Quad IV.
From right triangles we know:
Cos θ = adjacent/hypotenuse = 5/13
sin θ = opposite/hypotenuse = ?/13
To find the opposite side across from θ use the pythagorean theorem.
5² + y² = 13²
25 + y² = 169
y² = 144
y = 12
we are given that sin is < 0 so sinθ = -12/13
Answer:
x = -1
x = 5
Step-by-step explanation:
Use pythagorean theorem: a² + b² = c²
x² + (2x + 2)² = (2x + 3)²
Since these are quantities, you'll have to make them into quadratic equations.
(2x + 2)(2x + 2) = 4x² + 4x + 4x + 4
(2x + 3)(2x + 3) = 4x² + 6x + 6x + 9
x² + 4x² + 4x + 4x + 4 = 4x² + 6x + 6x + 9
Combine like terms
5x² + 8x + 4 = 4x² + 12x + 9
Move one side to set the equation equal to 0
x² - 4x - 5 = 0
Solve
x² - 5x + x - 5 = 0
x(x - 5) + 1(x - 5) = 0
(x + 1)(x - 5) = 0
x = -1, 5
<em>We</em><em> </em><em>can</em><em> </em><em>check</em><em> </em><em>that</em><em> </em><em>these</em><em> </em><em>are</em><em> </em><em>correct</em><em> </em><em>by</em><em> </em><em>plugging</em><em> </em><em>them</em><em> </em><em>in</em><em> </em><em>for</em><em> </em><em>x</em><em> </em><em>and</em><em> </em><em>seeing</em><em> </em><em>if</em><em> </em><em>they</em><em> </em><em>are</em><em> </em><em>equal</em>
<em>For</em><em> </em><em>example</em>
<em>(</em><em>-1</em><em>)</em><em>²</em><em> </em><em>+</em><em> </em><em>(</em><em>2</em><em>(</em><em>-1</em><em>)</em><em> </em><em>+</em><em> </em><em>2</em><em>)</em><em>²</em><em> </em><em>=</em><em> </em><em>(</em><em>2</em><em>(</em><em>-1</em><em>)</em><em> </em><em>+</em><em> </em><em>3</em><em>)</em><em>²</em>
<em>1</em><em> </em><em>=</em><em> </em><em>1</em>
Answer:
1. The speed of the truck, S = D/T.
2. The formula that connects D and T is: S = D/T.
3. The coefficient of variation, k, is the ratio of the standard deviation to the mean speed.
Step-by-step explanation:
a) The speed of a truck at a fixed speed is given as the distance covered by the truck divided by the time it takes the truck to cover the said distance. This implies that speed is a function of distance and time. However, this formula represents the mean speed. There are variations in speed.
b) If the truck covers a distance of 60 kilometers, for example, under 3 hours, we can conclude that the speed is 20 kilometers per hour (60/3) or 20 km/hr.