Answer:
0.0933 moles/Litre
Explanation:
We assume that the number of moles of N- used is equal to the number of moles of Nitrogen containing compounds that are generated due to the fact that the nitrogen containing compound that are produced contain only one nitrogen in each atom. As such, finding the amount of nitrogen used up explains the amount of compound formed. This can be expressed as follows:
Energy cost = 
Given that:
Energy = 100 W for 60 minutes
100 W = 100 J/s
= 100 J/s × (60 × 60) seconds
= 3.6 × 10⁵ J
Let now convert 3.6 × 10⁵ J to eV; we have:
= ( 3.6 × 10⁵ × 6.242 × 10¹⁸ )eV
= 2.247 × 10²⁴ eV
So, number of N-atom used up to form compounds will now be:
= 2.247 × 10²⁴ eV × 
= 1.123 × 10²³ N-atom
To moles; we have:
= 
= 0.186 moles
However, we are expected to leave our answer in concentration (i.e in moles/L)
since we are given 2L
So; 0.186 moles ⇒ 
= 0.0933 moles/Litre
1) The nucleus of an atom loses 2 protons and 4 neutrons.
2) The nucleus of an atom gains a proton and it's neutrons remain the same.
I'm going to go with Physical.
Correct Answer: Option C
Reason:
<span>The </span>Pauli Exclusion Principle<span> states as '<em>in an atom or molecule, no two electrons can have the same four electronic quantum numbers. Further, an orbital can contain a maximum of only two electrons, the two electrons must have opposing spins.</em>'
</span>
Thus, it can be seen that in option C, electrons in last 2 subshell have electrons with same spin, which is a violation of Pauli Exclusion Principle .