Answer:

Explanation:
This question asks us to find the temperature change given a volume change. We will use Charles's Law, which states the volume of a gas is directly proportional to the temperature. The formula is:

The volume of the gas starts at 250 milliliters and the temperature is 137 °C.

The volume of the gas is increased to 425 milliliters, but the temperature is unknown.

We are solving for the new temperature, so we must isolate the variable T₂. First, cross multiply. Multiply the first numerator and second denominator, then multiply the first denominator and second numerator.

Now the variable is being multiplied by 250 milliliters. The inverse of multiplication is division. Divide both sides of the equation by 250 mL.


The units of milliliters (mL) cancel.



The temperature changes to <u>232.9 degrees Celsius.</u>
Answer:
C
Explanation:
looking at a periodic table X is fluorine and Y is potassium
Fluorine is in group 7 and forms a 1- charge (which gains electrons) and potassium is in group 1 and forms a 1+ charge (which loses electrons)
Fluorine (X) has an electronic structure of 2,7 and needs to gain an electron from Potassium (Y) to have a full outer shell and potassium has an electronic structure of 2,8,8,1 so needs to lose an electron to have a full outer shell as well. This means that the electron that potassium (Y) has lost is given away to fluorine (X), so both elements become stable.
This is known as ionic bonding where metals (like potassium) lose electrons and non-metals (like fluorine) gain electrons to become more stable, forming ions
Any further clarification let me know
Answer:
4 x 12 +9 x 1= 56
Explanation:
I do not know what the 114.17 g/mol comes from
Answer:
2Fe(s) + 3O2(g) --------> 2FeO3(s)
Explanation:
According to the question, a battery was used to light the steel wool by bringing the terminals very close together. When the battery came into contact with the steel wool, current was sent out through the thin wire. This caused the iron to heat up quite well.
Iron reacts with oxygen under these conditions as follows;
2Fe(s) + 3O2(g) --------> 2FeO3(s)
This is the chemical reaction that occurs when the steel wool is set on fire.
The model of the atom has dramatically changed over many many years.We learned atoms make up different substances and are the smallest particles of matter, which have subatomic particles that are very small portions of matter. At first scientist only thought there were electrons which are negatively charged.