Answer:
Mass = 0.697 g
Explanation:
Given data:
Volume of hydrogen = 1.36 L
Mass of ammonia produced = ?
Temperature = standard = 273.15 K
Pressure = standard = 1 atm
Solution:
Chemical equation:
3H₂ + N₂ → 2NH₃
First of all we will calculate the number of moles of hydrogen:
PV = nRT
R = general gas constant = 0.0821 atm.L/mol.K
1atm ×1.36 L = n × 0.0821 atm.L/mol.K × 273.15 K
1.36 atm.L = n × 22.43 atm.L/mol
n = 1.36 atm.L / 22.43 atm.L/mol
n = 0.061 mol
Now we will compare the moles of hydrogen and ammonia:
H₂ : NH₃
3 : 2
0.061 : 2/3×0.061 = 0.041
Mass of ammonia:
Mass = number of moles × molar mass
Mass = 0.041 mol × 17 g/mol
Mass = 0.697 g
Answer:
Explain: In order to balance the chemical equation, you need to make sure the number of atoms of each element on the reactant side is equal to the number of atoms of each element on the product side. In order make both sides equal, you will need to multiply the number of atoms in each element until both sides are equal.
Answer: Option (B) is the correct answer.
Explanation:
Expression for the given decomposition reaction is as follows.
Let us assume that x concentration of is present at the initial stage. Therefore, according to the ICE table,
Initial : x 0
Change : - 0.1
Equilibrium : (x - 0.1) 0.2
Now, expression for of this reaction is as follows.
Putting the given values into the above formula as follows.
x = 0.12
This means that = x = 0.12 atm.
Thus, we can conclude that the initial pressure in the container prior to decomposition is 0.12 atm.
P1v1/t1 = p2t2/t2
p is constant
v1=600, t1 =20c=293K
v2=?, t2=60c=333K
temperature must be in Kelvin
do the math
All i know that we are HOOman