Answer:
100 g
Explanation:
From the question given above, the following data were obtained:
Original amount (N₀) = 400 g
Time (t) = 4 years
Half-life (t½) = 2 years
Amount remaining (N) =?
Next, we shall determine the number of half-lives that has elapse. This can be obtained as follow:
Time (t) = 4 years
Half-life (t½) = 2 years
Number of half-lives (n) =?
n = t / t½
n = 4 / 2
n = 2
Thus, 2 half-lives has elapsed.
Finally, we shall determine the amount remaining of the radioactive isotope. This can be obtained as follow:
Original amount (N₀) = 400 g
Number of half-lives (n) = 2
Amount remaining (N) =?
N = 1/2ⁿ × N₀
N = 1/2² × 400
N = 1/4 × 400
N = 0.25 × 400
N = 100 g
Thus, the amount of the radioactive isotope remaing is the 100 g.
Answer:
B. is the answer
Explanation:
Energy in form of heat is transferred from the warmer mashed potatoes to the cooler spoon.
Answer:

Explanation:
The final answer has a different set of units. In particular, meters (m) changes to centimeters (cm). To make this change, you need to multiply the first value by proportions.
When writing these proportions, it is important that they are arranged in a way that allows for the cancellation of units. For instance, since m is located in the denominator, it must be located in the numerator of the conversion.
<u>Proportion:</u>
1 m = 100 cm
The full expression:
<h3>

·

=

</h3><h2> ^</h2>
As you can see, the old unit (m) cancels out and you are left with cm in the denominator.
Answer:
if a 40.0-gram sample of the gas occupies 11.2 liters of space at STP? A balloon is filled with 5 moles of helium gas.
Explanation:
When writing an ionic compound formula, a "molecular" form is used. The formula is made with allowance for ion charges.
For example,
Ca²⁺ and NO₃⁻ ⇒ Ca(NO₃)₂
Al³⁺ and SO₄²⁻ ⇒ Al₂(SO₄)₃