PbI(ii) ionization in the solution of PBI(ii) into water is:
<span>PbI</span>₂(solution) <==> Pb₂⁺ + 2I⁻
If the conc. of PbI(ii) in the sol. is xM then the conc. of Lead(ii) will be x M and conc. of iodide will be 2 x M.
Therefore,
<span>Ksp=<span>[Pb</span></span>²⁺][I-]²
Plugging the values:
1.4×10⁻⁸ = x ⋅ (2x)²
1.4×10⁻⁸ = 4x³
x³ = {1.4×10⁻⁸}÷4
x³ = 0.35 x 10⁻⁸
or
x³ = 3.5 x 10⁻⁹
x = 1.51 x 10⁻³
Hence,
Concentration of iodide ions in the solution:
2x = 3.02 x 10⁻³
Temperature is a measure of the average kinetic energy of the particles in the sample. This is the statement that defines the temperature of a sample of matter.
The temperature of a system is defined simply as the average energy of microscopic motions of a single particle in the system per degree of freedom.
The microscopic motions in a solid matter is the principal vibrations of the constituent atoms about their sites. In an ideal monoatomic gas, the microscopic motions are the translational motions of the constituent gas particles. In multiatomic gases, aside from translational motions, vibrational and rotational motions are included in the microscopic motions.
24= y2k* - 2x H202 grams in mass
The answer would be A will increase and T <span>will decrease.
The product of this reaction emits red light because it absorbs green and blue light. As the reaction occurs, the concentration of the product increase. This will makes absorbance of green and blue light increases and the solution will become redder.</span>
NaCl, when you combine sodium and chlorine