Answer:
(E) changing temperature
Explanation:
Consider the following reversible balanced reaction:
aA+bB⇋cC+dD
If we know the molar concentrations of each of the reaction species, we can find the value of Kc using the relationship:
Kc = ([C]^c * [D]^d) / ([A]^a * [B]^b)
where:
[C] and [D] are the concentrations of the products in the equilibrium; [A] and [B] reagent concentrations in equilibrium; already; b; c and d are the stoichiometric coefficients of the balanced equation. Concentrations are commonly expressed in molarity, which has units of moles / 1
There are some important things to remember when calculating Kc:
- <em>Kc is a constant for a specific reaction at a specific temperature</em>. If you change the reaction temperature, then Kc also changes
- Pure solids and liquids, including solvents, are not considered for equilibrium expression.
- The reaction must be balanced with the written coefficients as the minimum possible integer value in order to obtain the correct value of Kc
Offspring are more rapidly reproduced
Answer:-
As we can see from the graphical data,
The distance covered by all the four runners is the same 5 km.
Among the four athletes, Athlete P covers the distance in under three hours.
It is the minimum time taken among the four athletes.
Thus Athlete P covers the 5 km distance in the minimum amount of time.
We know that speed = 
Since time taken for P is minimum, his speed is the maximum. P ran the fastest.
Time taken by Q = 4.5 hours.
Speed of Q = 
= 
= 1.1 km/ hr
Time taken by R = 6 hours.
Speed of R = 
= 
= 0.8 km/ hr
Answer:
-81.5 degrees C or 191.5 K
Explanation:
We want to use Charles' gas law: V/T = V/T
Our initial volume is 3.20 L, and our initial temperature is 125 degrees C, or 125 + 273 = 398 degrees Kelvin.
Our new Volume is 1.54 L, but we don't know what the temperature is. So, we use the equation:
3.20 L / 398 K = 1.54 L / T ⇒ Solving for T, we get: T = 191.5 K
If we want this in degrees Celsius, we subtract 273: 191.5 - 273 = -81.5 degrees C
Answer:
<h3>The answer is 7.50 g/mL</h3>
Explanation:
The density of a substance can be found by using the formula

From the question
mass of iron = 150 g
volume = 20 mL
We have

We have the final answer as
<h3>7.50 g/mL</h3>
Hope this helps you