Answer:
Constructive interference
Explanation:
Here, the medium is same, same wavelength, same frequency, same amplitude and same direction of propagation.
Let the intensity of waves be I which is same for both
The formula for the net intensity is

where, Ф be the phase difference
So, 
Here, IR is maximum so the interference is constructive in nature.
Answer: 15.8
Explanation:
You are given that the
Object distance U = 32 cm
Focal length F = 30.1 cm
First calculate the image distance V by using the formula
1/F = 1/U + 1/V
Substitute F and V into the formula
1/30.1 = 1/32 + 1/V
1/V = 1/30.1 - 1/32
1/V = 0.00197259
Reciprocate both sides
V = 506.94 cm
Magnification M is the ratio of image distance to object distance.
M = V/U
substitute the values of V and U into the formula
M = 506.94/32
M = 15.8
Therefore, the magnification of the image is 15.8 or approximately 16.
Answer:
Because the electricity flows through and creates static bonds around the metal case which creates a bond with other fields that protects it.
Explanation:
Answer:
The horizontal component of the 70 N force = 35·√3 N
The vertical component of the 70 N force = 35 N
Explanation:
The magnitude of the given force, F = 70 N
The angle of inclination of the given force to the horizontal, θ = 30°
By the resolution of forces, we can resolve the given force, F, into its horizontal component, Fₓ, and vertical components,
, as follows;
The horizontal component of the given force = Fₓ = F × cos(θ)
Substituting the values, we have;
The horizontal component of the 70 N force, Fₓ = 70 × cos(30°) = 35·√3 N
The vertical component of the given force =
= F × sin(θ)
Substituting the values, we have;
The vertical component of the 70 N force,
= 70 × sin(30°) = 35 N.
Answer:
Explanation:
velocity of ship with respect to water = 6.5 m/s due north

velocity of water with respect to earth = 1.5 m/s at 40° north of east

velocity of ship with respect to water = velocity of ship with respect to earth - velocity of water with respect to earth



The magnitude of the velocity of ship relative to earth is
= 5.66 m/s