<span>brains need to be flexible because if they weren't we would never be able to increase our intellect. human beings are more flexible intellectually because we can turn our hands to more complex things and have the ability to learn better.</span>
Answer:81.235N
Explanation:
Work=88J
theta=10°
distance=1.1 meters
work=force x cos(theta) x distance
88=force x cos10 x 1.1 cos10=0.9848
88=force x 0.9848 x 1.1
88=force x 1.08328
Divide both sides by 1.08328
88/1.08328=(force x 1.08328)/1.08328
81.235=force
Force=81.235
2ω is the resistance of the second wire if the resistance of the first is 4ω if two wires have the same length, but the second has twice the diameter of the first.
R= 4ω.
R = ρl/A
2d=r
R2=2ω
Resistance is the capacity of a conductor to obstruct the passage of an electric current through it. It is controlled by the interaction of the applied voltage and the electric current passing through it.
Conductors have very little resistance, whereas insulators have a significant amount of resistance. The resistance increases as the current flow decreases. Resistance is influenced by the properties and dimensions of the material (area of cross section)
To know more about resistance visit : brainly.com/question/14547003
#SPJ4
Answer:
E/4
Explanation:
The formula for electric field of a very large (essentially infinitely large) plane of charge is given by:
E = σ/(2ε₀)
Where;
E is the electric field
σ is the surface charge density
ε₀ is the electric constant.
Formula to calculate σ is;
σ = Q/A
Where;
Q is the total charge of the sheet
A is the sheet's area.
We are told the elastic sheet is a square with a side length as d, thus ;
A = d²
So;
σ = Q/d²
Putting Q/d² for σ in the electric field equation to obtain;
E = Q/(2ε₀d²)
Now, we can see that E is inversely proportional to the square of d i.e.
E ∝ 1/d²
The electric field at P has some magnitude E. We now double the side length of the sheet to 2L while keeping the same amount of charge Q distributed over the sheet.
From the relationship of E with d, the magnitude of electric field at P will now have a quarter of its original magnitude which is;
E_new = E/4