The relation between temperature and pressure is called the "equation of state of the gas". or "Hydrostatic equilibrium in ordinary star". Take for example a balloon, it will have a larger spherical shape, if the pressure inside exerted by the gas on a wall of a balloon balance the inward force exerted by the outside atmospheric pressure. In a dying star which is being compressed by gravity, the gas is being squeezed so the molecules is moving rapidly, resulting to a very high temperature, and this provide a balance that counteract or balances the compressive force of gravity. The very high temperature inside the star is needed to balance the force of gravity, and it is provide by "nuclear fusion energy" or else the star would collapse under the force of gravity. Depending on the size or mass of the star, it will either become, a "neutron star" or a "black hole".
Answer:
The distance between the two slits is 1.2mm.
Explanation:
The physicist Thomas Young establishes, through its double slit experiment, a relationship between the interference (constructive or destructive) of a wave, the separation between the slits, the distance between the two slits to the screen and the wavelength.
(1)
Where
is the distance between two adjacent maxima, L is the distance of the screen from the slits,
is the wavelength and d is the separation between the slits.
If light pass through two slits a diffraction pattern in a screen will be gotten, at which each bright region corresponds to a crest, a dark region to a trough, as consequence of constructive interference and destructive interference in different points of its propagation to the screen.
Therefore, d can be isolated from equation 1.
(2)
Notice that it is necessary to express L and
in units of millimeters.
⇒ 
⇒ 
Hence, the distance between the two slits is 1.2mm.
The least amount of inertia would be the one with least mass.
Of all the options, the smallest mass is likely the insect the cricket.
<span>A a cricket </span>
Answer:
A & B
Explanation:
A & B Would be the right answer since Morse code cannot be represented through the height of the fire.
The velocity of the rock after 2s is 12.56 m/s.
The velocity of the rock at 25 m upwards is 14.68 m/s.
The velocity of the rock at 25 m downwards is -15.97 m/s.
The given parameters;
- <em>velocity of the rock, u = 20 m/s</em>
- <em>height of the rock, h = 20t - 1.8t²</em>
<em />
The velocity of the rock after 2s is calculated as follows;

The velocity of the rock when the height is 25 m:
h = 20t - 1.8t²
25 = 20t - 1.8t²
1.8t² - 20t + 25 = 0
solve for the time of motion "t" using quadratic formula
a = 1.8, b = -20, c = 25

The value of t that will give 25 m upwards using the motion model is 1.43 s;
h = 20(1.43) - 1.86(1.43)² = 25 m
The velocity of the rock at 25 m upwards (t = 1.43 s) is calculated as follows;

The velocity of the rock at 25 m downwards (t = 9.67 s) is calculated as;

Learn more here:brainly.com/question/25233377