Answer:

Step-by-step explanation:
STEP 1:
2/3 + 7/10 = ?
The fractions have unlike denominators. First, find the Least Common Denominator and rewrite the fractions with the common denominator.
LCD(2/3, 7/10) = 30
Multiply both the numerator and denominator of each fraction by the number that makes its denominator equal the LCD. This is basically multiplying each fraction by 1.
*
+
= ?
Complete the multiplication and the equation becomes

The two fractions now have like denominators so you can add the numerators.
Then:

This fraction cannot be reduced.
The fraction 41/30
is the same as
41 divided by 30
Convert to a mixed number using
long division for 41 ÷ 30 = 1R11, so
41/30 = 1 11/30
Therefore:
2/3+7/10= 1 11/30
STEP 2:
41/30 + -2/3
The fractions have unlike denominators. First, find the Least Common Denominator and rewrite the fractions with the common denominator.
LCD(41/30, -2/3) = 30
Multiply both the numerator and denominator of each fraction by the number that makes its denominator equal the LCD. This is basically multiplying each fraction by 1.

The two fractions now have like denominators so you can add the numerators.
Then:

This fraction can be reduced by dividing both the numerator and denominator by the Greatest Common Factor of 21 and 30 using
GCF(21,30) = 3

Therefore:
|
Answer:
The ball will be 84 feet above the ground 1.125 seconds and 4.5 seconds after launch.
Step-by-step explanation:
Statement is incorrect. Correct form is presented below:
<em>The height </em>
<em> of an ball that is thrown straight upward from an initial position 3 feet off the ground with initial velocity of 90 feet per second is given by equation </em>
<em>, where </em>
<em> is time in seconds. After how many seconds will the ball be 84 feet above the ground. </em>
We equalize the kinematic formula to 84 feet and solve the resulting second-order polynomial by Quadratic Formula to determine the instants associated with such height:

(1)
By Quadratic Formula:

,
The ball will be 84 feet above the ground 1.125 seconds and 4.5 seconds after launch.
You simply need to compute the ratio between the length of the segment
and the length of the corresponding segment