Answer:
28 m/s^2
Explanation:
distance, s = 14 m
time, t = 2 - 1 = 1 s
initial velocity, u = 0 m/s
Let a be the acceleration.
Use third equation of motion


a = 28 m/s^2
Thus, the acceleration is 28 m/s^2.
Answer:
<em>Time period of pendulum is 2.02 s.</em>
Explanation:
A <em>simple pendulum</em> is a device which consists of mass m hanging from the string of length L attached to the some point.When displaced and released its swings back and forth with periodic motion.
The time period of pendulum is defined as time taken by the pendulum to complete one full oscillation . it is denoted by T.
By <em>Huygens law of period of pendulum</em>,
T = 2π
eqn 1
where L is the length of pendulum,
g is acceleration due to gravity
<em>Period of pendulum is independent of the mass of pendulum,</em>
<em />
Substituting values in eqn 1
T = 2π 
T = 2.02 s
<em>Time period of pendulum is 2.02 s.</em>
Answer:
Explanation:
From the given information:
radius = 15 m
Time T = 23 s
a) Speed (v) = 

v = 4.10 m/s
b) The magnitude of the acceleration is:

a = 1.12 m/s²
c) True weight = mg
Apparent weight = normal force
From the top;
the normal force = upward direction,
weight is downward as well as the acceleration.
true weight - normal force = ma
apparent weight =mg - ma


= 0.886 m/s²
d)
From the bottom;
acceleration is upward, so:
apparent weight - true weight = ma
apparent weight = true weight + ma



= 1.114 m/s²
Explanation:
We have,
Height of object is 5 cm
Object distance from a convex lens is 18 cm
Focal length of convex lens is 10 cm
i.e. h = 5 cm
u = -18 cm
f = +10 cm
Let v is distance of the image from the lens. Using lens formula :

The magnification of lens is :
, h' is height of the image

h' = -5.00 cm (in three significant figures)