The response would become spontaneous if the value of ΔG° was negative.
According to the estimated value of ΔG°, it is shown that ΔG° value decreases as temperature value increases. The value shifts from being more favorable to being less favorable. It would appear that the value of ΔG° would be negative at a specific temperature, causing the reaction to occur spontaneously.
The reaction is in an equilibrium state if ΔG = 0. If ΔG < 0, the reaction is spontaneous in the direction written. The relationship between terms from the equilibrium is paralleled by the relevance of the sign of a change in the Gibbs free energy.
Learn more about ΔG° here:
brainly.com/question/14512088
#SPJ4
The normal boiling point<span> of </span>ethanol<span> is 78.4 degrees C and, at thistemperature, </span>the vapor pressure<span> is 101325 Pascals (Pa) or 760manometric units
thx hope this helped bye.</span>
Answer:The solid is less dense than the liquid
Explanation:
Ice is less dense than water because of the crevices or spaces in the lattice structure of ice. Liquid water has a much greater density than solid water because its molecules are more compactly packed than in ice. Ice has large spaces between the hydrogen bonded water molecules hence less density than the liquid. Being less dense than !liquid water, it floats on water.
First, you need to convert kg to g.
So, 1 kg =1000g.
3.5 x 1000 = 3500g Ca(OH)2
We need to know the molar mass of Ca(OH)2.
Ca= 40.08 g
O=2(15.999)
H=2(1.0079)
Add them all together and you get 74.0938 g.
Put it in the formula from mass to moles.
# of moles = grams Ca(OH)2 x 1 mol Ca(OH)2
--------------------
molar mass Ca(OH)2
3500 g Ca(OH)2 x 1 mol Ca(OH)2
---------------------
74.0938 g Ca(OH)2
So divide 1/74.0938 and multiply by 3500.
You will get about 47.24 moles Ca(OH)2.
Hope this helps! :)