Answer:
41.67 mol
Explanation:
1 Litre of water = 1000g
Mole = mass / molar mass
Mass of 1 L of water = 1000 g
Molar mass of water (H2O) :
(H = 1, O = 16)
H2O = (1 * 2) + 16 = (2 + 16) = 18g/mol
Amount of water consumed = (3/4) of 1 litre
= (3/4) * 1000g
= 750g
Therefore mass of water consumed = 750g
Mole = 750g / 18g/mol
Mole of water consumed = 41.6666
= 41.67 mol
<span>6.
Because the general formula for alkenes is CnH2n</span>
Answer:
The unknown solution had the higher concentration.
Explanation:
When two solutions are separated by a semi-permeable membrane, depending on the concentration gradient between the two solutions, there is a tendency for water molecules to move across the semi-permeable in order to establish an equilibrium concentration between the two solutions. This movement of water molecules across a semi-permeable membrane in response to a concentration gradient is known as osmosis. In osmosis, water molecules moves from a region of lower solute concentration or higher water molecules concentration to a region of higher solute concentration or lower water molecules concentration until equilibrium concentration is attained.
Based on the observation that when the glucose solution described in part A is connected to an unknown solution via a semipermeable membrane, the unknown solution level rises, it means that water molecules have passed from the glucose solution through the semipermeable membrane into the unknown solution. Therefore, the solution has a higher solute concentration than the glucose solution.
A higher density (besides H2O) as they have a more rigid structure, they have better conductive abilities than their liquid or gas forms. there are a couple more that i cannot think of at this moment in time.