Methane CH4 CH4 1 hexane C6H14 CH3(CH2)4CH3 5
ethane C2H6 CH3CH3 1 heptane C7H16 CH3(CH2)5CH3 9
propane C3H8 CH3CH2CH3 1 octane C8H18 CH3(CH2)6CH3 18
butane C4H10 CH3CH2CH2CH3 2 nonane C9H20 CH3(CH2)7CH3 35
pentane C5H12 CH3(CH2)3CH3 3 decane C10H22 CH3(CH2)8CH3 75
In is a lot easier because it uses 10s.
Answer:
K = Ka/Kb
Explanation:
P(s) + (3/2) Cl₂(g) <-------> PCl₃(g) K = ?
P(s) + (5/2) Cl₂(g) <--------> PCl₅(g) Ka
PCl₃(g) + Cl₂(g) <---------> PCl₅(g) Kb
K = [PCl₃]/ ([P] [Cl₂]⁽³'²⁾)
Ka = [PCl₅]/ ([P] [Cl₂]⁽⁵'²⁾)
Kb = [PCl₅]/ ([PCl₃] [Cl₂])
Since [PCl₅] = [PCl₅]
From the Ka equation,
[PCl₅] = Ka ([P] [Cl₂]⁽⁵'²⁾)
From the Kb equation
[PCl₅] = Kb ([PCl₃] [Cl₂])
Equating them
Ka ([P] [Cl₂]⁽⁵'²⁾) = Kb ([PCl₃] [Cl₂])
(Ka/Kb) = ([PCl₃] [Cl₂]) / ([P] [Cl₂]⁽⁵'²⁾)
(Ka/Kb) = [PCl₃] / ([P] [Cl₂]⁽³'²⁾)
Comparing this with the equation for the overall equilibrium constant
K = Ka/Kb