Near water, change in elevation, or change in latitude.
First convert celcius to Kelvin.
20 + 273 = 293K
31 + 273 = 304K
Now we can set up an equation based on the information we have.
V1 = 5
P1 = 365
T1 = 293
V2 = 5
P1 = x
T2 = 304
The equation be: 
Now just solve.
1825/293 = 5x/304
Cross multiply.
554800 = 1465x
Divide both sides by 1465
x = 378.7030717 which can then be rounded to 378.7 mmHg
Answer:
[OH⁻] = 3.34x10⁻³M; Percent ionization = 0.54%; pH = 11.52
Explanation:
Kb of the reaction:
NH3 + H2O(l) ⇄ NH4+ + OH-
Is:
Kb = 1.8x10⁻⁵ = [NH₄⁺] [OH⁻] / [NH₃]
<em>As all NH₄⁺ and OH⁻ comes from the same source we can write: </em>
<em>[NH₄⁺] = [OH⁻] = X</em>
<em>And as </em>[NH₃] = 0.619M
1.8x10⁻⁵ = [X] [X] / [0.619M]
1.11x10⁻⁵ = X²
3.34x10⁻³ = X = [NH₄⁺] = [OH⁻]
<h3>[OH⁻] = 3.34x10⁻³M</h3><h3 />
% ionization:
[NH₄⁺] / [NH₃] * 100 = 3.34x10⁻³M / 0.619M * 100 = 0.54%
pH:
As pOH = -log [OH-]
pOH = 2.48
pH = 14 - pOH
<h3>pH = 11.52</h3>
The balanced chemical reaction is:<span>
</span><span>2C6H6 + 15O2 → 12CO2 + 6H2O</span><span>
We
are given the amount of carbon dioxide to be produced for the reaction. This will
be the starting point of our calculations.
</span>42 g CO2 ( 1 mol CO2 / 44.01 g CO2) ( 2 mol C6H6 / 12 mol CO2 ) (78.1074 g C6H6 / 1 mol C6H6) = 12.42 grams of C6H6
The number<span> of protons in the nucleus of an </span>atom is equal to <span>the </span><span>atomic number of an element. You can also find it by subtracting the number of neutrons from the atomic mass. Atomic Number = Atomic Mass - No. of Neutrons.</span>