Answer: Option (b) is the correct answer.
Explanation:
According to the law of conservation of energy, it is known that energy can neither be created nor it can be destroyed.
But energy can be changed from one form to another.
Whereas entropy is the degree of randomness present within the molecules of a substance or object.
For example, gas molecules are able to move rapidly so, they have more entropy as compared to solid and liquid substances.
According to second law of thermodynamics, entropy of the system is always increasing.
Thus, we can conclude that "Conservation of energy" refers to the fact that energy cannot be created or destroyed but can be converted from one form to another.
Answer:
800.0 mL.
Explanation:
- To solve this problem; we must mention the rule states the no. of millimoles of a substance before and after dilution is the same.
<em>(MV)before dilution of HCl = (MV)after dilution of HCl</em>
M before dilution = 12.0 M, V before dilution = 100.0 mL.
M after dilution = 1.5 M, V after dilution = ??? mL.
∵ (MV)before dilution of HCl = (MV)after dilution of HCl
∴ (12.0 M)(100.0 mL) = (1.5 M)(V after dilution of HCl)
<em>∴ V after dilution of HCl = (12.0 M)(100.0 mL)/(1`.5 M) = 800.0 mL.</em>
With increasing temperature of the chemical reaction
Answer: Yes
Explanation:
With more water, the molecules of the substance have more water molecules to form bonds with, thus they are dissolved even faster at that same particular temperature.
For example: a mildly soluble substance like powdered milk get more dissolved in your teacup as water, the solvent is increased
Answer:
Gas is sometimes measured in cubic feet at a temperature of 60 degrees Fahrenheit and an atmospheric pressure of 14.7 pounds per square inch. Gas production from wells is discussed in terms of thousands or millions of cubic feet (Mcf and MMcf). Resources and reserves are calculated in trillions of cubic feet (Tcf).