If x + y = 6, then solve for y to get: y = 6 - x.
Now replace y with 6 - x in both equations.
(5x)/3 + 6 - x = c
2(6 - x) = c - 4x
The upper equation is solved for c.
Now we solve the lower equation for c.
c = 2(6 - x) + 4x
c = 12 - 2x + 4x
c = 2x + 12
Since we have two equations solved for c, we substitute to get
(5x)/3 + 6 - x = 2x + 12
This is an equation in only x, so we can solve for x.
(5x)/3 - 3x = 6
5x - 9x = 18
-4x = 18
x = -9/2
Now we solve for y.
x + y = 6
-9/2 + y = 6
y = 9/2 + 12/2
y = 21/2
Now we solve for c.
c = (5x)/3 + y
c = (5 * (-9/2))/3 + 21/2
c = -45/6 + 21/2
c = -15/2 + 21/2
c = 6/2
c = 3
Answer: c = 3
1/9 + 1/2 = 1/x
Let x = length of time it will take both hoses to work together
Multiply both sides by 18x.
2x + 9x = 18
10x = 18
x = 18/10
x = 9/5
x = 1.8 hours
In other words, if both hoses work together, the pool can be filled in 1 hour and 48 minutes.
Answer:
a) 0.06 = 6% probability that a person has both type O blood and the Rh- factor.
b) 0.94 = 94% probability that a person does NOT have both type O blood and the Rh- factor.
Step-by-step explanation:
I am going to solve this question treating these events as Venn probabilities.
I am going to say that:
Event A: Person has type A blood.
Event B: Person has Rh- factor.
43% of people have type O blood
This means that 
15% of people have Rh- factor
This means that 
52% of people have type O or Rh- factor.
This means that 
a. Find the probability that a person has both type O blood and the Rh- factor.
This is

With what we have

0.06 = 6% probability that a person has both type O blood and the Rh- factor.
b. Find the probability that a person does NOT have both type O blood and the Rh- factor.
1 - 0.06 = 0.94
0.94 = 94% probability that a person does NOT have both type O blood and the Rh- factor.
Answer:
25 nickles are 5/12ths of a dollar
Step-by-step explanation:
25*5=125, or $1.25. Now we make this a fraction, we get 1.25/3, or 5/12