Answer:
its on wheels and they are supposed to make it eas
Explanation:
<span>When the fuel of the rocket is consumed, the acceleration would be zero. However, at this phase the rocket would still be going up until all the forces of gravity would dominate and change the direction of the rocket. We need to calculate two distances, one from the ground until the point where the fuel is consumed and from that point to the point where the gravity would change the direction.
Given:
a = 86 m/s^2
t = 1.7 s
Solution:
d = vi (t) + 0.5 (a) (t^2)
d = (0) (1.7) + 0.5 (86) (1.7)^2
d = 124.27 m
vf = vi + at
vf = 0 + 86 (1.7)
vf = 146.2 m/s (velocity when the fuel is consumed completely)
Then, we calculate the time it takes until it reaches the maximum height.
vf = vi + at
0 = 146.2 + (-9.8) (t)
t = 14.92 s
Then, the second distance
d= vi (t) + 0.5 (a) (t^2)
d = 146.2 (14.92) + 0.5 (-9.8) (14.92^2)
d = 1090.53 m
Then, we determine the maximum altitude:
d1 + d2 = 124.27 m + 1090.53 m = 1214.8 m</span>
Answer:
There are seven principles that form the content grounds of our teaching framework:
Non-maleficence. ...
Beneficence. ...
Health maximisation. ...
Efficiency. ...
Respect for autonomy. ...
Justice. ...
Proportionality.
Explanation:
a. The net force is the upward force of the chute minus the weight of the crate.
∑F = F − mg
∑F = 150 N − (11 kg) (9.8 m/s²)
∑F = 42.2 N
b. From Newton's second law, the net force equals the mass times acceleration:
∑F = ma
42.2 N = (11 kg) a
a = 3.84 m/s²
c. Acceleration is the change in velocity over change in time. Assuming the crate is released from rest:
v = at + v₀
v = (3.84 m/s²) (5 s) + (0 m/s)
v = 19.2 m/s