1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Lerok [7]
4 years ago
10

A river has a steady speed 0.500 m/s. A student swims upstream a distance of1.00 km and swims back to the starting point. a) If

the student can swim ata speed of 1.20 m/s in still water, how long does the trip take? b) How muchtime is required in still water for the same length swim? c) Intuitively, whydoes the swim take longer when there is a current?
Physics
1 answer:
Ivahew [28]4 years ago
6 0

Answer:

a) 33.6 min

b) 13.9 min

c)  Intuitively, it takes longer to complete the trip when there is current because, the swimmer spends much more time swimming at the net low speed (0.7 m/s) than the time he spends swimming at higher net speed (1.7 m/s).


Explanation:


The problem deals with relative velocities.

  • Call Vr the speed of the river, which is equal to 0.500 m/s
  • Call Vs the speed of the student in still water, which is equal to 1.20 m/s
  • You know that when the student swims upstream, Vr and Vs are opposed and the net speed will be Vs - Vr
  • And when the student swims downstream, Vr adds to Vs and the net speed will be Vs + Vr.

Now, you can state the equations for each section:

  • distance = speed × time
  • upstream: distance = (Vs - Vr) × t₁ = 1,000 m
  • downstream: distance = (Vs + Vr) × t₂ = 1,000 m

Part a). To state the time, you substitute the known values of Vr and Vs and clear for the time in each equation:

  • (Vs - Vr) × t₁ = 1,000 m
  • (1.20 m/s - 0.500 m/s) t₁ = 1,000 m⇒ t₁ = 1,000 m / 0.70 m/s ≈ 1429 s
  • (1.20 m/s + 0.500 m/s) t₂ = 1,000 m ⇒ t₂ = 1,000 m / 1.7 m/s ≈ 588 s
  • total time = t₁ + t₂ = 1429s + 588s =  2,017s
  • Convert to minutes: 2,0147 s ₓ 1 min / 60s ≈ 33.6 min

Part b) In this part you assume that the complete trip is made at the velocity Vs = 1.20 m/s


  • time = distance / speed = 1,000 m / 1.20 m/s ≈ 833 s ≈ 13.9 min

Part c) Intuitively, it takes longer to complete the trip when there is current because the swimmer spends more time swimming at the net speed of 0.7 m/s than the time than he spends swimming at the net speed of 1.7 m/s.

You might be interested in
Wax, like all matter, comes in many phases. What are the three possible
Levart [38]
A b and c its so simple bro send it 23-89
7 0
3 years ago
A meter stick balances at the 50.0-cm mark. If a mass of 50.0 g is placed at the 90.0-cm mark, the stick balances at the 61.3-cm
Airida [17]

Answer:

126.99115 g

Explanation:

50 g at 90 cm

Stick balances at 61.3 cm

x = Distance of the third 0.6 kg mass

Meter stick hanging at 50 cm

Torque about the support point is given by (torque is conserved)

mgl_1=Mgl_2\\\Rightarrow M=\dfrac{ml_1}{l_2}\\\Rightarrow M=\dfrac{50\times (61.3-90)}{50-61.3}\\\Rightarrow M=126.99115\ g

The mass of the meter stick is 126.99115 g

6 0
3 years ago
Read 2 more answers
Bowling balls are roughly the same size, but come in a variety of weights. Given its official radius of roughly 0.110 m, calcula
velikii [3]

Answer:

6.1328 kg

60.16284 N

Explanation:

r = Radius of ball = 0.11 m

\rho = Density of fluid = 1.1\times 10^3\ kg/m^3 (Assumed)

g = Acceleration due to gravity = 9.81 m/s²

m = Mass of ball

V = Volume of ball = \frac{4}{3}\pi r^3

The weight of the bowling ball will balance the buouyant force

W=F_b\\\Rightarrow mg=V\rho g\\\Rightarrow m=\frac{V\rho g}{g}\\\Rightarrow m=V\rho\\\Rightarrow m=\frac{4}{3}\pi 0.11^3\times 1.1\times 10^3\\\Rightarrow m=6.1328\ kg

The mass of the bowling ball will be 6.1328 kg

Weight will be 6.1328\times 9.81=60.16284\ N

5 0
3 years ago
The melting point of potassium thiocyanate determined by a student in the laboratory turned out to be 174.5 oC. The accepted val
yaroslaw [1]

Answer:

0.75%

Explanation:

Measured value of melting point of potassium thiocyanate = 174.5 °C

Actual value of melting point of potassium thiocyanate = 173.2 °C

<em>Error in the reading = |Experimental value - Theoretical value|</em>

<em>= |174.5 - 173.2|</em>

<em>= |1.3|</em>

<em>Percentage error = (Error / Theoretical value) × 100</em>

<em>= (1.3 / 173.2)×100</em>

<em>= 0.75 %</em>

∴ Percentage error in the reading is 0.75%

4 0
3 years ago
3 a There is a thin layer of water between the blade and the ice. Suggest how this affects friction .​
Gelneren [198K]

Answer:

The water acts like a lubricant therefore has a smooth motion over the ice.

8 0
3 years ago
Other questions:
  • What is the change in its velocity, v, during this 0.80-s interval?
    13·1 answer
  • Calculate the force at sea level that a boy of mass 50 kg exerts on a chair in which he is sitting
    9·1 answer
  • A dependent variable is also called a _____?
    13·1 answer
  • a gas exerts less pressure when it has a a. smaller volume b. lower temperature c. higher temperature d. two of the above
    14·1 answer
  • A 78.5-kg man is standing on a frictionless ice surface when he throws a 2.40-kg book horizontally at a speed of 11.3 m/s. With
    8·2 answers
  • A crate of mass 10.0 kg is pulled up a roughincline with an initial speed of 1.50m/s. The pulling forceis 100N parallel to the i
    8·1 answer
  • 24. A car is travelling along an expressway at 90 km/h. The driver spots a stalled car and some traffic congestion on the road a
    8·1 answer
  • A truck pushes a mound of dirt 5 meters with a force of 75 newtons. How much<br> work has been done?
    15·1 answer
  • Find the specific heat of a substance that requires 8000 J of energy to heat up 400g by 20 C?
    8·1 answer
  • How does the "human" part of human resources influence how companies need to treat these resources?
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!