Equilibrium force is the force that will keep the small
mass in place, hence no movement must be made. So we know that 32 N of force is
acted towards the positive direction so +32 N. Which is counteracted by 26 N
force so:
32 N – 26 N = 6 N (positive)
Since positive 6 is left, therefore this must be acted by
an equilibrant negative 6 N.
Answer:
<span>- 6 N </span>
<h2>
<em><u>A</u></em><em><u>N</u></em><em><u>S</u></em><em><u>W</u></em><em><u>E</u></em><em><u>R</u></em><em><u>S</u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em></h2>
<em>1) The relationship in between the electrical energy carriesd by the transmission wires and the amount of the heat loss in it is due to the reason that when the electricity is flown through the wires there are some resistance found in these wires which creates a disturbance in the efficient flow of electricty.Also we know that current have an heating effect when it is in motion as due to if a large amount or magnitude of electricity is flown through the transmission wires it will carry a larger heat effected and also due to the resistance is provided by the wires and so the process of heat loss takes place.</em>
<em>2)It is important to minimize current in transmission wires due to minimize the heat loss and resistance on flowing electric current to make the system more efficient </em>
<em><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u></em><em> 3)Given Resistance = 250 ohms </em>
<em>Electric potential = 150 volts </em>
<em>so we know Power = </em>
<em>volt^2/Resistance = </em>
<em>=</em><em>(150^2/250)(ohms/volts)</em>
<em>=</em><em>(22500/250)watt = 9</em><em>0</em><em> </em><em>w</em><em>a</em><em>t</em><em>t</em><em> </em>
<em>4)Heat energy (H) = Power(P)×Time(t)</em>
<em>4)Heat energy (H) = Power(P)×Time(t)= (90×2)joules = 180 joul</em><em>e</em><em>s</em>
<em>H</em><em>o</em><em>p</em><em>e</em><em> </em><em>i</em><em>t</em><em> </em><em>h</em><em>e</em><em>l</em><em>p</em><em>s</em>
Answer:
the horizontal distance is 4.355 meters
Explanation:
The computation of the horizontal distance while travelling in the air is shown below:
Data provided in the question is as follows
Velocity = u = 7.70 m/s
H = 1.60 m
R = horizontal direction
Based on the above information
As we know that
R = u × time
where,
Time = 
So,
= 
= 4.355 meters
hence, the horizontal distance is 4.355 meters
The statement about pointwise convergence follows because C is a complete metric space. If fn → f uniformly on S, then |fn(z) − fm(z)| ≤ |fn(z) − f(z)| + |f(z) − fm(z)|, hence {fn} is uniformly Cauchy. Conversely, if {fn} is uniformly Cauchy, it is pointwise Cauchy and therefore converges pointwise to a limit function f. If |fn(z)−fm(z)| ≤ ε for all n,m ≥ N and all z ∈ S, let m → ∞ to show that |fn(z)−f(z)|≤εforn≥N andallz∈S. Thusfn →f uniformlyonS.
2. This is immediate from (2.2.7).
3. We have f′(x) = (2/x3)e−1/x2 for x ̸= 0, and f′(0) = limh→0(1/h)e−1/h2 = 0. Since f(n)(x) is of the form pn(1/x)e−1/x2 for x ̸= 0, where pn is a polynomial, an induction argument shows that f(n)(0) = 0 for all n. If g is analytic on D(0,r) and g = f on (−r,r), then by (2.2.16), g(z) =