1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Lerok [7]
3 years ago
10

A river has a steady speed 0.500 m/s. A student swims upstream a distance of1.00 km and swims back to the starting point. a) If

the student can swim ata speed of 1.20 m/s in still water, how long does the trip take? b) How muchtime is required in still water for the same length swim? c) Intuitively, whydoes the swim take longer when there is a current?
Physics
1 answer:
Ivahew [28]3 years ago
6 0

Answer:

a) 33.6 min

b) 13.9 min

c)  Intuitively, it takes longer to complete the trip when there is current because, the swimmer spends much more time swimming at the net low speed (0.7 m/s) than the time he spends swimming at higher net speed (1.7 m/s).


Explanation:


The problem deals with relative velocities.

  • Call Vr the speed of the river, which is equal to 0.500 m/s
  • Call Vs the speed of the student in still water, which is equal to 1.20 m/s
  • You know that when the student swims upstream, Vr and Vs are opposed and the net speed will be Vs - Vr
  • And when the student swims downstream, Vr adds to Vs and the net speed will be Vs + Vr.

Now, you can state the equations for each section:

  • distance = speed × time
  • upstream: distance = (Vs - Vr) × t₁ = 1,000 m
  • downstream: distance = (Vs + Vr) × t₂ = 1,000 m

Part a). To state the time, you substitute the known values of Vr and Vs and clear for the time in each equation:

  • (Vs - Vr) × t₁ = 1,000 m
  • (1.20 m/s - 0.500 m/s) t₁ = 1,000 m⇒ t₁ = 1,000 m / 0.70 m/s ≈ 1429 s
  • (1.20 m/s + 0.500 m/s) t₂ = 1,000 m ⇒ t₂ = 1,000 m / 1.7 m/s ≈ 588 s
  • total time = t₁ + t₂ = 1429s + 588s =  2,017s
  • Convert to minutes: 2,0147 s ₓ 1 min / 60s ≈ 33.6 min

Part b) In this part you assume that the complete trip is made at the velocity Vs = 1.20 m/s


  • time = distance / speed = 1,000 m / 1.20 m/s ≈ 833 s ≈ 13.9 min

Part c) Intuitively, it takes longer to complete the trip when there is current because the swimmer spends more time swimming at the net speed of 0.7 m/s than the time than he spends swimming at the net speed of 1.7 m/s.

You might be interested in
Suppose the gas resulting from the sublimation of 1.00 g carbon dioxide is collected over water at 25.0◦c into a 1.00 l containe
AlexFokin [52]

Answer:

0.56 atm

Explanation:

First of all, we need to find the number of moles of the gas.

We know that

m = 1.00 g is the mass of the gas

Mm=44.0 g/mol is the molar mass of the carbon dioxide

So, the number of moles of the gas is

n=\frac{m}{M_m}=\frac{1.00 g}{44.0 g/mol}=0.023 mol

Now we can find the pressure of the gas by using the ideal gas equation:

pV=nRT

where

p is the pressure

V=1.00 L = 0.001 m^3 is the volume

n = 0.023 mol is the number of moles

R=8.314 J/mol K is the gas constant

T=25.0^{\circ}+273=298 K is the temperature of the gas

Solving the equation for p, we find

p=\frac{nRT}{V}=\frac{(0.023 mol)(8.314 J/mol K)(298 K)}{0.001 m^3}=5.7 \cdot 10^4 Pa

And since we have

1 atm = 1.01\cdot 10^5 Pa

the pressure in atmospheres is

p=\frac{5.7\cdot 10^4 Pa}{1.01\cdot 10^5 Pa/atm}=0.56 atm

5 0
3 years ago
It takes 200 N to move a box 10 meters in 8 seconds. How much power is
svetoff [14.1K]

Answer:

A

Explanation:

The equation of power is defined as Power = Workdone/Time Taken

And workdone = Force x Distance so using these equations we get they workdone is, 200x 10 = 2000Nm.

Dividing workdone with time will yield power, 2000 ÷ 8 = 250 Nm/s = 250W.

8 0
3 years ago
Question 2: Start-Up
yuradex [85]

Answer:

The car starts moving in the positive direction at x = 0.2 seconds. Initially it moves very little, but it covers a greater distance with each time increment.

Explanation:

7 0
2 years ago
A hollow spherical shell has mass 8.20 kg and radius 0.220 m. It is initially at rest and then rotates about a stationary axis t
Likurg_2 [28]

Answer:

8.91 J

Explanation:

mass, m = 8.20 kg

radius, r = 0.22 m

Moment of inertia of the shell, I = 2/3 mr^2

                                                    = 2/3 x 8.2 x 0.22 x 0.22 = 0.265 kgm^2

n = 6 revolutions

Angular displacement, θ = 6 x 2 x π = 37.68 rad

angular acceleration, α = 0.890 rad/s^2

initial angular velocity, ωo = 0 rad/s

Let the final angular velocity is ω.

Use third equation of motion

ω² = ωo² + 2αθ

ω² = 0 + 2 x 0.890 x 37.68

ω = 8.2 rad/s

Kinetic energy,

K = \frac{1}{2}I\omega ^{2}

K = 0.5 x 0.265 x 8.2 x 8.2

K = 8.91 J

6 0
2 years ago
A trip is taken that passes through the following points in order
riadik2000 [5.3K]

Answer:

35, I got you bro, i got you

8 0
3 years ago
Other questions:
  • Metalloids have properties of both ________ and _____________
    10·2 answers
  • In one type of solar energy system, sunlight heats the air within solar panels, which heats copper tubes filled with water. what
    9·1 answer
  • 1.which of the following are true.
    11·2 answers
  • A 4500-kg spaceship is in a circular orbit 190 km above the surface of Earth. It needs to be moved into a higher circular orbit
    13·1 answer
  • how do i write this to where it is true? in the blue is a statement and the attached piece is false so i have to make it true an
    8·1 answer
  • How many atoms are in one mole of uranium?
    13·2 answers
  • What is Archimedes principles ???&amp;<br><br><br><br>yaha avo sab ​
    5·2 answers
  • Which of the following statements describes the trend in the data?
    8·1 answer
  • Arm ab has a constant angular velocity of 16 rad/s counterclockwise. At the instant when theta = 60
    5·1 answer
  • A particle of mass moves under a force given bywhere and are unit vectors in the and directions. The particle is placed at the o
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!