Answer:
0.099C
Explanation:
First, we need to get the common potential voltage using the formula

Where V is the common voltage, C and V represent capacitance and charge respectively. Subscripts 1 and 2 to represent the the first and second respectively. Substituting the above with the following given values then

Therefore

Charge, Q is given by CV hence for the first capacitor charge will be 
Here, 
Answer:
0.074m/s
Explanation:
We need the formula for conservation of momentum in a collision, this equation is given by,

Where,
= mass of ball
= mass of the person
= Velocity of ball before collision
= Velocity of the person before collision
= velocity of ball afer collision
= velocity of the person after collision
We know that after the collision, as the person as the ball have both the same velocity, then,


Re-arrenge to find
,

Our values are,
= 0.425kg
= 12m/s
= 68.5kg
= 0m/s
Substituting,


<em />
<em>The speed of the person would be 0.074m/s after the collision between him/her and the ball</em>
Answer:
In a global convection cell less –dense air at the equator rises and flows towards the poles. And from pole, the dense air sinks down and flows back towards the equator.... This movement of air is also supported by the Earth's rotation known as Coriolis Effect.
It is gravity¿ what is the question?
Answer: Two celestial objects are in space: one with a mass of 8.22 x 109 kg and one with a mass of 1.38 x 108 kg. If they are separated by a distance of 1.43 km, then, the magnitude of the force of attraction (in newtons) between the objects will be 52.9kN
Explanation: To find the answer we need to know more about the Newton's law of gravitation.
<h3>What is Newton's law of gravitation?</h3>
- Gravitation is the force of attraction between any two bodies.
- Every body in the universe attracts every other body with a force.
- This force is directly proportional to the product of their masses and inversely proportional to the square of the distance between these two masses.
- Mathematically we can expressed it as,

<h3>How to solve the problem?</h3>
- Here, we have given with the data's,

- Thus, the force of attraction between these two bodies will be,

Thus, if two celestial objects are in space: one with a mass of 8.22 x 109 kg and one with a mass of 1.38 x 108 kg and, If they are separated by a distance of 1.43 km, then, the magnitude of the force of attraction (in newtons) between the objects will be 52.9kN.
Learn more about the Newton's law of gravitation here:
brainly.com/question/28045318
#SPJ4