Sifting is the best method cuz all the dirt will be carried by wind.
Answers:
The transportation industry is no stranger to the manipulation of everyday physics. Cars and trains utilize the wheel, which provides a smooth, steady motion.
The ears hear sounds which occur through the movement of air molecules, and the chemistry that drives all of biology depends on the physics of energy and molecules. Every day, for example, plants absorb sunlight, water, and carbon dioxide, creating glucose and releasing oxygen as a byproduct.
Brainlist pls!
Find the volume of the bottom and top separately and then add them.
Cylinder volume is the area of the bottom times the height
(22/7)(5^2)•175=13750 ft^3
The volume of a sphere is
V=(4/3)(22/7)r^3
where r is the radius. Here that's also 5 since it fits on the cylinder.
Also we only want half the sphere so use
V=(2/3)(22/7)•5^3=261.9 ft^3
Which we round upto 262.
Now add the parts together
13750+262=14,012 ft^3
Answer:
M
Explanation:
To apply the concept of <u>angular momentum conservation</u>, there should be no external torque before and after
As the <u>asteroid is travelling directly towards the center of the Earth</u>, after impact ,it <u>does not impose any torque on earth's rotation,</u> So angular momentum of earth is conserved
⇒
-
is the moment of interia of earth before impact -
is the angular velocity of earth about an axis passing through the center of earth before impact
is moment of interia of earth and asteroid system
is the angular velocity of earth and asteroid system about the same axis
let 
since 

⇒ if time period is to increase by 25%, which is
times, the angular velocity decreases 25% which is
times
therefore

(moment of inertia of solid sphere)
where M is mass of earth
R is radius of earth

(As given asteroid is very small compared to earth, we assume it be a particle compared to earth, therefore by parallel axis theorem we find its moment of inertia with respect to axis)
where
is mass of asteroid
⇒ 

=
+ 

⇒
