1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Eva8 [605]
3 years ago
14

A postcard is 4 inches shorter than an envelope. The envelope is 10 inches long. How long is the postcard? The diagram below cou

ld be used to solve this problem. Write and solve an equation to find the length of the postcard.
Mathematics
2 answers:
RoseWind [281]3 years ago
5 0
The post card would be 6inches long

10-4=x
10-4=6
x=6
Pie3 years ago
3 0
10-4 equals 6. The answer is 6inches
You might be interested in
L 5.2.3 Quiz: Two-Variable Systems: Substitution
Misha Larkins [42]

Answer:

We get x=3 and y=21

The ordered pair will be: (3,21)

Step-by-step explanation:

We need to use the substitution method to solve the system of equations.

y = 10x-9\\y = x + 18

For substitution method we substitute the value of x or y from one equation to other.

Let:

y = 10x-9--eq(1)\\y = x + 18--eq(2)

Putting value of y from equation 2 into equation 1

y=10x-9\\Put\:y=x+18\\x+18=10x-9\\x-10x=-9-18\\-9x=-27\\x=\frac{-27}{-9}\\x=3

So, we get value of x=3

Now, for finding value of y, We substitute the value of x

Find value of x from equation 2

y=x+18\\x=y-18

Now, putting value of x in equation 1

y=10x-9\\Put\:x=y-18\\y=10(y-18)-9\\y=10y-180-9\\y-10y=-189\\-9y=-189\\y=\frac{-189}{-9}\\y=21

So, we get value of y=21

So, We get x=3 and y=21

The ordered pair will be: (3,21)

6 0
3 years ago
I need help ASAP WHAT is 3.63x5 and I need to show work​
gavmur [86]

Answer:

18.15

Step-by-step explanation:

3 0
4 years ago
Read 2 more answers
Which symbol makes a true statement? –7.8? –7<br> a. =<br> b. &gt;<br> c.
Scrat [10]
Which symbol makes a true statement?
–7.8 ? –7
<span>c. <</span>
6 0
3 years ago
This is one of the things I need help on?
katrin [286]

Answer:

Here's your solution

=> <em>Both </em><em>angles</em><em> </em><em>are </em><em>interior</em><em> </em><em>angles</em><em> </em><em>hence</em><em> </em><em>their</em><em> </em>

<em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em>=</em><em>></em><em> </em><em>sum </em><em>will </em><em>equal</em><em> to</em><em> </em><em>1</em><em>8</em><em>0</em><em>°</em>

<em> </em><em> </em><em> </em><em> </em><em> </em><em>=</em><em>></em><em> </em><em> </em><em>(</em><em>2</em><em>x</em><em> </em><em>+</em><em> </em><em>1</em><em>0</em><em>)</em><em>°</em><em> </em><em> </em><em>+</em><em> </em><em>(</em><em> </em><em>x </em><em>+</em><em> </em><em>5</em><em>)</em><em> </em><em>=</em><em> </em><em>1</em><em>8</em><em>0</em><em>°</em>

<em> </em><em> </em><em> </em><em> </em><em>=</em><em>></em><em> </em><em> </em><em>2</em><em>x</em><em> </em><em>+</em><em> </em><em>1</em><em>0</em><em>°</em><em> </em><em>+</em><em> </em><em>x </em><em>+</em><em> </em><em>5</em><em>°</em><em> </em><em>=</em><em> </em><em>1</em><em>8</em><em>0</em><em>°</em>

<em> </em><em> </em><em> </em><em> </em><em>=</em><em>></em><em>.</em><em>3</em><em>x</em><em> </em><em>+</em><em> </em><em>1</em><em>5</em><em>°</em><em> </em><em>=</em><em> </em><em>1</em><em>8</em><em>0</em><em>°</em>

<em> </em><em> </em><em> </em><em> </em><em> </em>

<em> </em><em> </em><em> </em><em> </em><em> </em><em>=</em><em>></em><em> </em><em> </em><em>3</em><em>x</em><em> </em><em>=</em><em> </em><em>1</em><em>8</em><em>0</em><em>°</em><em> </em><em>-</em><em> </em><em>1</em><em>5</em><em>°</em>

<em> </em><em> </em><em> </em><em> </em><em> </em><em>=</em><em>></em><em>. </em><em>3</em><em>x</em><em> </em><em>=</em><em> </em><em>1</em><em>6</em><em>5</em><em>°</em>

<em> </em><em> </em><em> </em><em> </em><em>=</em><em>></em><em>. </em><em>x </em><em>=</em><em> </em><em>1</em><em>6</em><em>5</em><em>/</em><em>3</em>

<em> </em><em> </em><em> </em><em> </em><em>=</em><em>></em><em>. </em><em>x </em><em>=</em><em> </em><em>5</em><em>5</em><em>°</em>

<em> </em><em> </em><em> </em><em> </em><em> </em><em>=</em><em>></em><em> </em><em>hence </em><em>angle </em><em>=</em><em> </em><em>1</em><em>2</em><em>0</em><em>°</em><em> </em><em>and </em><em>6</em><em>0</em><em>°</em>

<em> </em><em> </em><em> </em><em> </em><em> </em><em>hope</em><em> it</em><em> helps</em>

<em> </em><em> </em><em> </em><em> </em><em> </em>

3 0
3 years ago
Read 2 more answers
<img src="https://tex.z-dn.net/?f=Given%20%5C%3A%20cotA%20%3D%20%5Csqrt%7B%5Cdfrac%7B1%7D%7B3%7D%7D" id="TexFormula1" title="Giv
ruslelena [56]
<h3>Given :</h3>

\tt cotA = \sqrt{ \dfrac{1}{3}}

\tt \implies cotA = \dfrac{1}{\sqrt{3}}

<h3>To Find :</h3>

All other trigonometric ratios, which are :

  • sinA
  • cosA
  • tanA
  • cosecA
  • secA

<h3>Solution :</h3>

Let's make a diagram of right angled triangle ABC.

Now, From point A,

AC = Hypotenuse

BC = Perpendicular

AB = Base

\tt We \: are \: given, \: cotA = \dfrac{1}{\sqrt{3}}

\tt We \: know \: that \: cot \theta = \dfrac{base}{perpendicular}

\tt \implies  \dfrac{base}{perpendicular} = \dfrac{1}{\sqrt{3}}

\tt \implies  \dfrac{AB}{BC} = \dfrac{1}{\sqrt{3}}

\tt \implies  AB = 1x \: ; \: BC = \sqrt{3}x \: (x \: is \: positive)

Now, by Pythagoras' theorem, we have

AC² = AB² + BC²

\tt \implies AC^{2} = (1x)^{2} + (\sqrt{3}x)^{2}

\tt \implies AC^{2} = 1x^{2} + 3x^{2}

\tt \implies AC^{2} = 4x^{2}

\tt \implies AC = \sqrt{4x^{2}}

\tt \implies AC = 2x

Now,

\tt sin \theta = \dfrac{perpendicular}{hypotenuse}

\tt \implies sinA = \dfrac{BC}{AC}

\tt \implies sinA = \dfrac{\sqrt{3}x}{2x}

\tt \implies sinA = \dfrac{\sqrt{3}}{2}

\Large \boxed{\tt sinA = \dfrac{\sqrt{3}}{2}}

\tt cos \theta = \dfrac{base}{hypotenuse}

\tt \implies cosA = \dfrac{AB}{AC}

\tt \implies cosA = \dfrac{1x}{2x}

\tt \implies cosA = \dfrac{1}{2}

\Large \boxed{\tt cosA = \dfrac{1}{2}}

\tt tan \theta = \dfrac{perpendicular}{base}

\tt \implies tanA = \dfrac{BC}{AB}

\tt \implies tanA = \dfrac{\sqrt{3}x}{1x}

\tt \implies tanA = \sqrt{3}

\Large \boxed{\tt tanA = \sqrt{3}}

\tt cosec \theta = \dfrac{hypotenuse}{perpendicular}

\tt \implies cosecA = \dfrac{AC}{BC}

\tt \implies cosecA = \dfrac{2x}{\sqrt{3}x}

\tt \implies cosecA = \dfrac{2}{\sqrt{3}}

\Large \boxed{\tt cosecA = \dfrac{2}{\sqrt{3}}}

\tt sec \theta = \dfrac{hypotenuse}{base}

\tt \implies secA = \dfrac{AC}{AB}

\tt \implies secA = \dfrac{2x}{1x}

\tt \implies secA = 2

\Large \boxed{\tt secA = 2}

5 0
4 years ago
Read 2 more answers
Other questions:
  • Uncle Drew scored 28 points in 5 5/6 minutes during a game of basketball.How many points did he average per minute during that 5
    10·2 answers
  • Two binomials that are factors of x^2+8x+12
    10·1 answer
  • 2.Assume that x is a binomial random variable with n=1000 and p=0.50. Use a normal approximation to find each of the following p
    7·1 answer
  • Suppose that the sitting​ back-to-knee length for a group of adults has a normal distribution with a mean of μ=22.5 in. and a st
    8·1 answer
  • Marlin is two years older than reese ,and the same age as lee .if lee is 12 ,how old is reese
    10·1 answer
  • A number f multiplied -12.3 is --73.8
    14·1 answer
  • Evaluate the expression shown below and write your answer as a fraction in simplest form 1/9+1/12
    8·1 answer
  • M &lt; CDE is 82.5°, what is the measure of its complement?
    7·1 answer
  • Ughhhhh Its Mondayyyyyyyy soooooo free point question whats 3x+-7=93
    5·1 answer
  • Rocco is making goat food cups to be sold in a petting zoo. He has 8 apples, which is only of what he needs to make enough food
    7·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!