Answer:
(1, 2)
Step-by-step explanation:
Subtract the second equation from the first:
(y) -(y) = (6x -4) -(-x +3)
0 = 7x -7 . . . . . simplify
0 = x - 1 . . . . . . divide by 7
1 = x . . . . . . . . . add 1
y = -1 +3 = 2 . . . substitute into the second equation
The solution is (x, y) = (1, 2).
Answer:

Step-By-Step Explanation:

the cheap answer is simply
(x-5)(x²+4x-2)
we can simply multiply the terms on one by the terms of the other and then add like-terms and simplify.
![\bf (x-5)(x^2+4x-2)\implies \begin{array}{cllll} x^2+4x-2\\ \times x\\ \cline{1-1}\\ x^3+4x^2-2x \end{array}+ \begin{array}{cllll} x^2+4x-2\\ \times -5\\ \cline{1-1}\\ -5x^2-20x+10 \end{array} \\\\\\ x^3+4x^2-2x-5x^2-20x+10\implies x^3+4x^2-5x^2-2x-20x+10 \\\\[-0.35em] \rule{34em}{0.25pt}\\\\ ~\hfill x^3-x^2-22x+10~\hfill](https://tex.z-dn.net/?f=%5Cbf%20%28x-5%29%28x%5E2%2B4x-2%29%5Cimplies%20%5Cbegin%7Barray%7D%7Bcllll%7D%20x%5E2%2B4x-2%5C%5C%20%5Ctimes%20x%5C%5C%20%5Ccline%7B1-1%7D%5C%5C%20x%5E3%2B4x%5E2-2x%20%5Cend%7Barray%7D%2B%20%5Cbegin%7Barray%7D%7Bcllll%7D%20x%5E2%2B4x-2%5C%5C%20%5Ctimes%20-5%5C%5C%20%5Ccline%7B1-1%7D%5C%5C%20-5x%5E2-20x%2B10%20%5Cend%7Barray%7D%20%5C%5C%5C%5C%5C%5C%20x%5E3%2B4x%5E2-2x-5x%5E2-20x%2B10%5Cimplies%20x%5E3%2B4x%5E2-5x%5E2-2x-20x%2B10%20%5C%5C%5C%5C%5B-0.35em%5D%20%5Crule%7B34em%7D%7B0.25pt%7D%5C%5C%5C%5C%20~%5Chfill%20x%5E3-x%5E2-22x%2B10~%5Chfill)