States of matter are determined by temperature. When the temperature is more cold, the particles move less. The colder the temperature, the more solid something becomes. Because the particles are in fixed positions, they do not move much, they are colder, and they are solid. Also, you cannot pass your hand through locked atoms. If you swipe your hand through water or gas, it parts. Solids, however, are fixed and cannot be passed by without significant force to break it.
Milk is a complex colloidal system.
Answer:
T₂ = 150 K
Explanation:
Given data:
Initial volume = 4 L
Initial temperature = 300 K
Final volume = 2 L
Final temperature = ?
Solution:
The given problem will be solve through the Charles Law.
According to this law, The volume of given amount of a gas is directly proportional to its temperature at constant number of moles and pressure.
Mathematical expression:
V₁/T₁ = V₂/T₂
V₁ = Initial volume
T₁ = Initial temperature
V₂ = Final volume
T₂ = Final temperature
Now we will put the values in formula.
V₁/T₁ = V₂/T₂
T₂ = T₁V₂/V₁
T₂ = 300 K × 2L / 4 L
T₂ = 600 L.K / 4 L
T₂ = 150 K
The answer is potassium. It would be 4, and for neon would be 2. Just total which row of the periodic table you are on. The "L" tells you whether the highest-energy electron is in an "s" orbital (L=0) or a "p" orbital (L=1) or a "d" orbital (L=2) or an "f" orbital (L=3). The way in which these orbitals are filled is: for each of the first three rows (up to argon), two electrons in the "s" orbital are filled first, then 6 electrons in the "p"orbitals. The row where the potassium also starts with filling the "s" orbital at the new "n" level (4) but then goes back to satisfying up the "d" orbitals of n=3 before it seals up the "p"s for n=4.
i think its MIDDLE FINGERS UP IN THE SKY AND AT THESE AHOLE MODERATORS