M1v1=m2v2
m2=(m1v1)/v2
Where m is the molarities and v is the volumes
<span>m2=(25.0*0.500)/53.5
m2=12.5/53.5
m2=0.2336
by rounding off:
m2=0.234 M
so the answer is C: 0.234 M</span>
Answer:
Non-polar and non-polar molecules do not attract each other.
Explanation:
Dont forget to mark me as brainliest if it helped you ( Seriously you will thank me later)
Answer:
The total mass of D-Glucose dissolved in a 2μL aliquot is 1 E-4 g
Explanation:
providing a solution to 5% weight-volume as found in commerce:
⇒ % 5 = (5g d-glucose/ 100 mL sln)×100
⇒ 0.05 = g C6H12O6/mL sln
⇒ g C6H12O6 = (2 μL sln)×(0.001 mL/μL)×(0.05 g C6H12O6/mL sln)
⇒ g C6H12O6 = 1 E-4 g C6H12O6
1 N₂ + 3 H₂ = 2 NH₃
Mole ratio <span> of hydrogen to ammonia :
3 moles H</span>₂ : 2 moles NH₃ or 3 : 2
hope this helps!
Explanation:
As per the Hess’s law of constant heat summation, the heat absorbed or evolved in a given chemical equation is the same whether the process occurs in one step or several steps.
Hence, according to this law the chemical equation can be treated as ordinary algebraic expression and can be added or subtracted to yield the required equation. This means that the enthalpy change of the overall reaction is the sum of the enthalpy changes of the intermediate reactions.
..........(1)
..............(2)
The final reaction is as follows:
.............(3)
Therefore, adding (1) and (2) we get the final equation (3) and value of
at 298 K will be as follows.
=
+
= -314 kJ + (-80) kJ
= -394 kJ
Thus, we can conclude that
at 298 K for the given process is -394 kJ.