This is because solids have less energy than liquids do, hence it takes more energy to excite a solid into its gaseous phase than it does a liquid.
When opposed to merely reducing their separation, from solid to liquid, the energy needed to totally separate the molecules as they move from liquid to gas is substantially higher. The latent heat of vaporization is therefore bigger than the latent heat of fusion for this reason.
<h3>
What is heat of sublimation?</h3>
The amount of energy required to change one mole of a substance from its solid to its gaseous state under particular conditions—typically the standard ones—is known as the enthalpy of sublimation or heat of sublimation (STP). A solid's worth is based on its cohesive energy.
<h3>
What is heat of vaporization?</h3>
The term "enthalpy of vaporization," which is often referred to as "heat of vaporization" or "heat of evaporation," refers to the amount of energy that must be applied to a liquid substance in order to cause a part of that substance to transform into a gas. Vaporization's enthalpy varies with the pressure at which the transition takes place.
Learn more about heat of sublimation: brainly.com/question/13200793
#SPJ4
The correct question is:
Why heat of the sublimation of a substance is greater than the heat of vaporization?
Option 3 using forest land to build homes
<span>Answer:
For this problem, you would need to know the specific heat of water, that is, the amount of energy required to raise the temperature of 1 g of water by 1 degree C. The formula is q = c X m X delta T, where q is the specific heat of water, m is the mass and delta T is the change in temperature. If we look up the specific heat of water, we find it is 4.184 J/(g X degree C). The temperature of the water went up 20 degrees.
4.184 x 713 x 20.0 = 59700 J to 3 significant digits, or 59.7 kJ.
Now, that is the energy to form B2O3 from 1 gram of boron. If we want kJ/mole, we need to do a little more work.
To find the number of moles of Boron contained in 1 gram, we need to know the gram atomic mass of Boron, which is 10.811. Dividing 1 gram of boron by 10.811 gives us .0925 moles of boron. Since it takes 2 moles of boron to make 1 mole B2O3, we would divide the number of moles of boron by two to get the number of moles of B2O3.
.0925/2 = .0462 moles...so you would divide the energy in KJ by the number of moles to get KJ/mole. 59.7/.0462 = 1290 KJ/mole.</span>
Wym kingdom? I dont get it
To convert minutes to hours we divide the minutes by 60. So if we divide 3 by 60 we get 0.05 hours.
<h3>How to convert minutes into hour?</h3>
We know that in hour, there are 60 minutes so if we go from minutes to hours then we have to divide the number by 60 and when we go from hours to minutes we multiply with the same 60 number.
So we can conclude that to convert minutes to hours we divide the minutes by 60. So if we divide 3 by 60 we get 0.05 hours.
Learn more about hour here: brainly.com/question/291457
#SPJ1