1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Lana71 [14]
3 years ago
15

If I am in Vermont, then I am in the North.

Mathematics
1 answer:
raketka [301]3 years ago
6 0
The correct answer is D.

This is because a converse statement switches the places of the hypothesis and conclusion.
You might be interested in
9. Given f(x) = 7x2 and g(x) = x +1,<br> find f(g(x)). SHOW ALL WORK.
Nezavi [6.7K]

I hope this helps you

f(g(x)) =f(x+1)=7(x+1)^2

f(x+1)=7.(x^2+2x+1)

f(x+1)=7x^2+14x+7

8 0
3 years ago
Read 2 more answers
100+100 omg this is so tricky ooooo​
amm1812

Answer:

200

Step-by-step explanation:

100+

100

-----

200

8 0
3 years ago
Read 2 more answers
Study link 4.1 answers
ch4aika [34]
??? 4.222 and it is also different Bible like this
6 0
3 years ago
Activity 4: Performance Task
Nookie1986 [14]

An arithmetic progression is simply a progression with a common difference among consecutive terms.

  • <em>The sum of multiplies of 6 between 8 and 70 is 390</em>
  • <em>The sum of multiplies of 5 between 12 and 92 is 840</em>
  • <em>The sum of multiplies of 3 between 1 and 50 is 408</em>
  • <em>The sum of multiplies of 11 between 10 and 122 is 726</em>
  • <em>The sum of multiplies of 9 between 25 and 100 is 567</em>
  • <em>The sum of the first 20 terms is 630</em>
  • <em>The sum of the first 15 terms is 480</em>
  • <em>The sum of the first 32 terms is 3136</em>
  • <em>The sum of the first 27 terms is -486</em>
  • <em>The sum of the first 51 terms is 2193</em>

<em />

<u>(a) Sum of multiples of 6, between 8 and 70</u>

There are 10 multiples of 6 between 8 and 70, and the first of them is 12.

This means that:

\mathbf{a = 12}

\mathbf{n = 10}

\mathbf{d = 6}

The sum of n terms of an AP is:

\mathbf{S_n = \frac n2(2a + (n - 1)d)}

Substitute known values

\mathbf{S_{10} = \frac{10}2(2*12 + (10 - 1)6)}

\mathbf{S_{10} = 390}

<u>(b) Multiples of 5 between 12 and 92</u>

There are 16 multiples of 5 between 12 and 92, and the first of them is 15.

This means that:

\mathbf{a = 15}

\mathbf{n = 16}

\mathbf{d = 5}

The sum of n terms of an AP is:

\mathbf{S_n = \frac n2(2a + (n - 1)d)}

Substitute known values

\mathbf{S_{16} = \frac{16}2(2*15 + (16 - 1)5)}

\mathbf{S_{16} = 840}

<u>(c) Multiples of 3 between 1 and 50</u>

There are 16 multiples of 3 between 1 and 50, and the first of them is 3.

This means that:

\mathbf{a = 3}

\mathbf{n = 16}

\mathbf{d = 3}

The sum of n terms of an AP is:

\mathbf{S_n = \frac n2(2a + (n - 1)d)}

Substitute known values

\mathbf{S_{16} = \frac{16}2(2*3 + (16 - 1)3)}

\mathbf{S_{16} = 408}

<u>(d) Multiples of 11 between 10 and 122</u>

There are 11 multiples of 11 between 10 and 122, and the first of them is 11.

This means that:

\mathbf{a = 11}

\mathbf{n = 11}

\mathbf{d = 11}

The sum of n terms of an AP is:

\mathbf{S_n = \frac n2(2a + (n - 1)d)}

Substitute known values

\mathbf{S_{16} = \frac{11}2(2*11 + (11 - 1)11)}

\mathbf{S_{11} = 726}

<u />

<u>(e) Multiples of 9 between 25 and 100</u>

There are 9 multiples of 9 between 25 and 100, and the first of them is 27.

This means that:

\mathbf{a = 27}

\mathbf{n = 9}

\mathbf{d = 9}

The sum of n terms of an AP is:

\mathbf{S_n = \frac n2(2a + (n - 1)d)}

Substitute known values

\mathbf{S_{9} = \frac{9}2(2*27 + (9 - 1)9)}

\mathbf{S_{9} = 567}

<u>(f) Sum of first 20 terms</u>

The given parameters are:

\mathbf{a = 3}

\mathbf{d = 3}

\mathbf{n = 20}

The sum of n terms of an AP is:

\mathbf{S_n = \frac n2(2a + (n - 1)d)}

Substitute known values

\mathbf{S_{20} = \frac{20}2(2*3 + (20 - 1)3)}

\mathbf{S_{20} = 630}

<u>(f) Sum of first 15 terms</u>

The given parameters are:

\mathbf{a = 4}

\mathbf{d = 4}

\mathbf{n = 15}

The sum of n terms of an AP is:

\mathbf{S_n = \frac n2(2a + (n - 1)d)}

Substitute known values

\mathbf{S_{15} = \frac{15}2(2*4 + (15 - 1)4)}

\mathbf{S_{15} = 480}

<u>(g) Sum of first 32 terms</u>

The given parameters are:

\mathbf{a = 5}

\mathbf{d = 6}

\mathbf{n = 32}

The sum of n terms of an AP is:

\mathbf{S_n = \frac n2(2a + (n - 1)d)}

Substitute known values

\mathbf{S_{32} = \frac{32}2(2*5 + (32 - 1)6)}

\mathbf{S_{32} = 3136}

<u>(g) Sum of first 27 terms</u>

The given parameters are:

\mathbf{a = 8}

\mathbf{d = -2}

\mathbf{n = 27}

The sum of n terms of an AP is:

\mathbf{S_n = \frac n2(2a + (n - 1)d)}

Substitute known values

\mathbf{S_{27} = \frac{27}2(2*8 + (27 - 1)*-2)}

\mathbf{S_{27} = -486}

<u>(h) Sum of first 51 terms</u>

The given parameters are:

\mathbf{a = -7}

\mathbf{d = 2}

\mathbf{n = 51}

The sum of n terms of an AP is:

\mathbf{S_n = \frac n2(2a + (n - 1)d)}

Substitute known values

\mathbf{S_{51} = \frac{51}2(2*-7 + (51 - 1)*2)}

\mathbf{S_{51} = 2193}

Read more about arithmetic progressions at:

brainly.com/question/13989292

4 0
2 years ago
Read 2 more answers
Abd and cbe are vertical angles, given that abd=13y-25 mcbe=5x+79 what is the value of x?
astraxan [27]

Answer:

-15.8

Step-by-step explanation:

7 0
3 years ago
Other questions:
  • A bowler knocks at least 6 pins 70% of the time.Out of 200 rolls, how many times can you predict the bowler will knock down at l
    6·1 answer
  • 8" × 8" × 3". Which expression will give her the total volume of the pans
    5·1 answer
  • A dot-com company plans to place money in a new venture capital fund that currently returns 18% per year, compounded daily, what
    7·1 answer
  • What is 3 1/2 divided by 1/4 simplified
    5·2 answers
  • Figure 1 is dilated to get Figure 2.
    13·1 answer
  • Jacie is serving steak and chicken she wants to have at least 20 pounds of meat. Steak is $8 per pound and chicken is $4 per pou
    5·2 answers
  • In a class room 3/10 of the students are wearing blue shirts and 3/5 are wearing white shirts there are 20 students In The class
    11·1 answer
  • June was thinking of a number. June half's the number and gets an answer of 53.7 form an equation with x from the information​
    11·1 answer
  • The hypotenuse of a 90-45-45 triangle is 20√2. What is the short leg and the long leg&gt;
    8·1 answer
  • Which decimal is equivalent to 2/9?
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!