To find the horizontal distance multiple the horizontal velocity by the time. Since there is no given time it must be calculated using kinematic equation.
Y=Yo+Voyt+1/2at^2
0=.55+0+1/2(-9.8)t^2
-.55=-4.9t^2
sqrt(.55/4.9)=t
t=0.335 seconds
Horizontal distance
=0.335s*1.2m/s
=0.402 meters
Answer:
7.65x10^3 m/s
Explanation:
The computation of the satellite's orbital speed is shown below:
Given that
Earth mass, M_e = 5.97 × 10^24 kg
Gravitational constant, G = 6.67 × 10^-11 N·m^2/kg
Orbital radius, r = 6.80 × 10^6m
Based on the above information
the satellite's orbital speed is
V_o = √GM_e ÷ √r
= √6.67 × 10^-11 × 5.97 × 10^24 ÷ √6.80 × 10^6
= 7.65x10^3 m/s
Answer:
yeah physical quantities are the quantities which can be meaured
Answer:

Explanation:
The intensity of an electromagnetic wave can be expressed in terms of the magnetic field using the next relationship:
(1)
- c is the speed of light (3*10⁸ m/s)
- μ₀ is the permeability of free space (in vacuum ) (1.26*10⁻⁶ N/A²)
- B₀ is the magnetic field


Now, let's define the relationship between power (P) and average intensity (I).

- P is the power
- A is the area crossed
So we can calculate the power.

Finally, energy is the product of P times time, so:

I hope it helps you!
If everything else is held constant ... the substance from which
the conductor is formed, its cross-sectional area, its temperature
everywhere along its length ... then yes, its resistance will be
directly proportional to its length.