The correct formula to use for the situation given above is: F = MA, where F is the applied force, M is the mass of the object and A is the acceleration.
From the details given in the question, we are told that:
F = 18, 400N
M = 145 g = 145 / 1000 = 0.145 kg
A = ?
From the equation F = MA
A = F / M
A = 18,400 / 0.145 = 126,896.55 = 1.27 *10^5.
Therefore, the correct option is C.
Answer:
0.572
Explanation:
First examine the force of friction at the slipping point where Ff = µsFN = µsmg.
the mass of the car is unknown,
The only force on the car that is not completely in the vertical direction is friction, so let us consider the sums of forces in the tangential and centerward directions.
First the tangential direction
∑Ft =Fft =mat
And then in the centerward direction ∑Fc =Ffc =mac =mv²t/r
Going back to our constant acceleration equations we see that v²t = v²ti +2at∆x = 2at πr/2
So going backwards and plugging in Ffc =m2atπr/ 2r =πmat
Ff = √(F2ft +F2fc)= matp √(1+π²)
µs = Ff /mg = at /g √(1+π²)=
1.70m/s/2 9.80 m/s² x√(1+π²)= 0.572
Answer:
Motivation is the process that initiates, guides, and maintains goal-oriented behaviors.
(a) The force exerted by the electric field on the plastic sphere is equal to

where

is the charge of the sphere and E is the strength of the electric field. This force should balance the weight of the sphere:

where m is the mass of the sphere and g is the gravitational acceleration.
Since the two forces must be equal, we have:

and so we find the intensity of the electric field

(b) Now let's find the direction of the field. The electric force must balance the weight of the sphere, which is directed downward, so the electric force should be directed upward. Since the charge is negative, the force is opposite to the electric field direction, and so the direction of the electric field is downward.