To solve this problem it is only necessary to apply the kinematic equations of angular motion description, for this purpose we know by definition that,

Where,
Angular Displacement
Angular Acceleration
Angular velocity
Initial angular displacement
For this case we have neither angular velocity nor initial angular displacement, then

Re-arrange for 

Replacing our values,


Therefore the ANgular acceleration of the mass is 
Answer:It is actually the South Magnetic pole
Explanation:The magnetic pole near earth's geographic north pole is actually the south magnetic pole. When it comes to magnets, opposites attract. This fact means that the north end of a magnet in a compass is attracted to the south magnetic pole, which lies close to the geographic north pole.
Vanadium is my favourite element because valadium alloys are used in nuclear reactors, valdium is also used for some ceramics and glass, its essential to some species (including humans although we need very little) an example of this is valafium is used to treat diabetes and low blood sugar
Answer:
0.51 m
Explanation:
Using the principle of conservation of energy, change in potential energy equals to the change in kinetic energy of the spring.
Kinetic energy, KE=½kx²
Where k is spring constant and x is the compression of spring
Potential energy, PE=mgh
Where g is acceleration due to gravity, h is height and m is mass
Equating KE=PE
mgh=½kx²
Making x the subject of formula

Substituting 9.81 m/s² for g, 1300 kg for m, 10m for h and 1000000 for k then

The linear velocity of a rotating object is the product of the angular velocity and the radius of the circular motion. Angular velocity is the rate of the change of angular displacement of a body that is in a circular motion. It is a vector quantity so it consists of a magnitude and direction. From the problem, the angular velocity is 5.9 rad per second and the radius is given as 12 centimeters. We calculate as follows:
Linear velocity = angular velocity (radius)
Linear velocity = 5.9 (12 ) = 70.8 cm / s
The linear velocity of the body in motion is 70.8 centimeters per second or 0.708 meters per second.