Answer:
x ’= 1,735 m, measured from the far left
Explanation:
For the system to be in equilibrium, the law of rotational equilibrium must be fulfilled.
Let's fix a reference system located at the point of rotation and that the anticlockwise rotations have been positive
They tell us that we have a mass (m1) on the left side and another mass (M2) on the right side,
the mass that is at the left end x = 1.2 m measured from the pivot point, the mass of the right side is at a distance x and the weight of the body that is located at the geometric center of the bar
x_{cm} = 1.2 -1
x_ {cm} = 0.2 m
Σ τ = 0
w₁ 1.2 + mg 0.2 - W₂ x = 0
x =
x = 
let's calculate
x =
2.9 1.2 + 4 0.2 / 8
x = 0.535 m
measured from the pivot point
measured from the far left is
x’= 1,2 + x
x'= 1.2 + 0.535
x ’= 1,735 m
Answer:
yes it doesn't matter
Explanation:
it doesn't matter because troughs and crests are the same and either can be used
Answer:
The orbital speed of this second satellite is 5195.16 m/s.
Explanation:
Given that,
Orbital radius of first satellite 
Orbital radius of second satellite 
Mass of first satellite 
Mass of second satellite 
Orbital speed of first satellite = 4800 m/s
We need to calculate the orbital speed of this second satellite
Using formula of orbital speed

From this relation,

Now, 

Put the value into the formula


Hence, The orbital speed of this second satellite is 5195.16 m/s.
Answer:
3. at new Moon only when the Moon is on the ecliptic.
Explanation:
- Solar eclipse is the condition when the moon comes in between the sun and the earth. In this condition the moon casts its shadow on the earth.
- Whether the eclipse is a total solar eclipse, a partial solar eclipse or an annular solar eclipse depends on various factors, but the position of the moon must be on the same orbital plane as that of the earth's orbit around the sun.
- The sun is about 400 times larger than the moon in size and the sun is almost 400 times farther from the earth than the moon is, this makes it possible for the moon to cover the sun completely leading to a complete solar eclipse.
- As we know that the orbit of the earth around the sun and the orbit of the moon around the earth is elliptical which leads to a variation in the distance from their rotating centers, so not of every eclipse the moon covers the sun completely developing an annular eclipse.
- When the moon is close enough to the earth on the ecliptic but not completely aligned in between the sun and the earth leads to a partial solar eclipse.