Answer:
v = 12.52 [m/s]
Explanation:
To solve this problem we must use the energy conservation theorem. Which tells us that potential energy is transformed into kinetic energy or vice versa. This is more clearly as the potential energy decreases the kinetic energy increases.
Ep = Ek
where:
Ep = potential energy [J] (units of joules]
Ek = kinetic energy [J]
Ep = m*g*h
where:
m = mass of the rock = 45 [g] = 0.045 [kg]
g = gravity acceleration = 9.81 [m/s²]
h = elevation = (20 - 12) = 8 [m]
Ek = 0.5*m*v²
where:
v = velocity [m/s]
The reference level of potential energy is taken as the ground level, at this level the potential energy is zero, i.e. all potential energy has been transformed into kinetic energy. In such a way that when the Rock has fallen 12 [m] it is located 8 [m] from the ground level.
m*g*h = 0.5*m*v²
v² = (g*h)/0.5
v = √(9.81*8)/0.5
v = 12.52 [m/s]
Answer:
a metallic
Explanation:
Metal atoms are joined together by metallic bonds. Metals can form cations (positive ions) with a sea of delocalized electrons.
The answer would be C: Rheostat. :)
Answer:
1.5024
Explanation:
Draw a diagram. Put the two cells in series. Now draw 3 resistors. Two of them equal 0.26 ohms each. The third one is the lightbulb which is 12 ohms.
R = 0.26 + 0.26 + 12 = 12.52
The bulb has a voltage of 2.88 volts across it. You can get the current from that.
i = E / R
i = 2.88 / 12 =
i = 0.24 amps.
Now you can get the voltage drop across the two cells.
E = ?
R = 0.26
i = 0.24 amps
E = 0.26 * 0.24
E = 0. 0624
Finally divide the 2.88 by 2 to get 1.44
Each cell has an emf of 1.44 + 0.0624 = 1.5024