An example is when u rub your pen on your hair hard that is friction
Answer: The focal length of the cornea-lens system in his eye must be LESS THAN the distance between the front and back of his eye.
Explanation:
The human eye the front part of the eye is the CORNEA. This is the tough white transparent part of the eye that helps in the refraction of light rays. While the backside of the eye is the RETINA. This is the part of the eye when images are focused.
When a normal eye is at rest, parallel rays from a distant object are focused on the retina. The ability of the eye - lens to focus points at different distances on the retina is known as accomodation. The adjustment of the eye lens to focus objects of varying distances is brought about by the ciliary muscles. The have the ability to change the shape of the eye which leads to change in focal length.
When a person with normal vision looks at a distant object at infinity, the lens brings parallel rays to focus on the retina. Thus, the furthest point which the eye can see distinctly is called the far point of the eye and it's infinity for a normal eye. But Joe was able to focus his eye on the tree, meaning that the tree was within his near point. This is the nearest point at which an object is clearly seen. Therefore, when the effective focal length of the cornea-lens system changes, it changes the location of the image of any object in one's field of view.
Answer:
the ice became smaller and turned to liquid because of the absorption of heat from the surrounding of the ice cube which makes it to change its form from solid to liquid
Answer:
The average speed for the entire run is 12 km/h.
Explanation:
The average speed is given by the following equation:

Where:
: is the total distance
: is the total time
If during the first hour, they ran a total of 13 kilometers and then, they ran 5.0 kilometers during the next half an hour we have:


Hence, the average speed is:

Therefore, the average speed for the entire run is 12 km/h.
I hope it helps you!
As the distance from a charged particle, "q", increases, the electric potential decreases.
<h3>
Electric potential between particles</h3>
The electric potential between particles is the work done in moving a unit charge from infinity to a certain point against the electrical resistance of the field.
V = Kq/r
where;
- K is Coulomb's constant
- q is the magnitude of the charge
- r is the distance between the charges
Thus, from the formula above, as the distance from a charged particle, "q", increases, the electric potential decreases.
Learn more about electric potential here: brainly.com/question/14306881
#SPJ1