Answer:
False
Explanation:
Warmer air is less dense than cold, which is why warm air tends to rise and cold air sinks. Being acted on by gravity, colder, denser air weighs more and exerts greater pressure per unit area.
Answer:
The velocity & acceleration will be taken as negative when a ball is thrown upward because work is done against the gravity.
Explanation:
This item is solved through the concept of the conservation of momentum which states that the momentum before and after collision should be equal.
momentum = mass x velocity
(1,600 kg)(16 m/s) + (1.0x10^3 kg)(10 m/s) = (1600 + 1000 kg)(x)
The value of x is 13.69 m/s. Thus, their final speed is approximately letter D. 14 m/s.
Answer:
(a) 1.257 x 10^5 J
(b) 1.456 Watt
Explanation:
Volume of blood, v = 7500 L = 7.5 m^3
Height, h = 1.63 m
density of blood, d = 1.05 x 10^3 kg/m^3
(a) work done = m x g x h
W = v x d x g x h = 7.5 x 1.05 x 1000 x 9.8 x 1.63 = 1.257 x 10^5 J
(b) time = 1 day = 24 x 60 x 60 s = 86400 seconds
Power = Work / time = 1.257 x 10^5 / 86400 = 1.456 Watt
Given :
Initial speed of car A is 15 m/s and initial speed of car B is zero.
Final speed of car A is zero and final speed of car B is 10 m/s.
To Find :
What fraction of the initial kinetic energy is lost in the collision.
Solution :
Initial kinetic energy is :

Final kinetic energy is :

Now, fraction of initial kinetic energy loss is :

Therefore, fraction of initial kinetic energy loss in the collision is 1.25 .