Answer:
20 degrees.
Explanation:
From Snell’s law of refraction:
sinθ1•n1 = sinθ2•n2
where θ1 is the incidence angle, θ2 is the refraction angle, n1 is the refraction index of light in medium1, and n2 is the refraction index for virgin olive oil. The incidence angle of the red light is θ1 = 30 degrees.
The red light is in air as medium1, so n1 (air) = 1.00029
So, to find θ2, the refracted angle:
sinθ1•1.00029 = sinθ2•1.464
sin(30)•1.00029 / 1.464 = sinθ2
0.5•1.00029 / 1.464 = sinθ2
sinθ2 = 0.3416291
θ2 = arcsin(0.3416291)
θ2 = 19.976 degrees
To the nearest degree,
θ2 = 20 degrees.
Answer:
225 N
Explanation:
"Below the horizontal" means he's pushing down at an angle.
Draw a free body diagram of the box. There are three forces: normal force N pushing up, weight force mg pulling down, and the applied force F at an angle θ.
Sum of forces in the y direction:
∑F = ma
N − mg − F sin θ = 0
N = F sin θ + mg
Plug in values:
N = (50 N) (sin 30°) + (20.0 kg) (10 m/s²)
N = 225 N
To solve this problem we need to apply the corresponding sound intensity measured from the logarithmic scale. Since in the range of intensities that the human ear can detect without pain there are large differences in the number of figures used on a linear scale, it is usual to use a logarithmic scale. The unit most used in the logarithmic scale is the decibel yes described as

Where,
I = Acoustic intensity in linear scale
= Hearing threshold
The value in decibels is 17dB, then

Using properties of logarithms we have,




Therefore the factor that the intensity of the sound was 