The sensation of a frequency is commonly referred to as the pitch of a sound. A high pitch sound corresponds to a high frequency sound wave and a low pitch sound corresponds to a low frequency sound wave. ... That is, two sound waves sound good when played together if one sound has twice the frequency of the other.
The statement is false. Balanced forces can NOT change the speed OR direction of an object's motion. (See Newton's #1 law of motion.)
Answer:
d = 68.18 m
Explanation:
Given that,
Initial velocity, u = 15 m/s
Finally it comes to stop, v = 0
Acceleration, a = -1.65 m/s²
Time, t = 2.5 s
We need to find the distance covered by the hayride before coming to a stop. Let d is the distance covered. Using third equation of motion to find it :

So, the hayride will cover a distance of 68.18 m.
Answer: c. 1.3 m/s^2
Explanation:
When he is at rest, is weight can be calculated as:
W = g*m
where:
m = mass of the man
g = gravitational acceleration = 9.8m/s^2
We know that at rest his weight is W = 824N, then we have:
824N = m*9.8m/s^2
824N/(9.8m/s^2) = m = 84.1 kg
Now, when the elevators moves up with an acceleration a, the acceleration that the man inside fells down is g + a.
Then the new weight is calculated as:
W = m*(g + a)
and we know that in this case:
W = 932N
g = 9.8m/s^2
m = 84.1 kg
Then we can find the value of a if we solve:
932N = 84.1kg*(9.8m/s^2 + a)
932N/84.1kg = 11.1 m/s^2 = 9.8m/s^2 + a
11.1 m/s^2 - 9.8m/s^2 = a = 1.3 m/s^2
The correct option is C
You can use mostly anything as long as it is circular. Depending on how big it is, you could use sturdy paper plates and use a stick/rod and tape to hold it together, or you could use bottle caps if the car you are trying to make is really small.