1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
liraira [26]
3 years ago
7

You pull a solid nickel ball with a density of 8.91 g/cm3 and a radius of 1.40 cm upward through a fluid at a constant speed of

9.00 cm/s. The fluid exerts a drag force that is directly proportional to speed, and the proportionality constant is 0.950 kg/s. What is the magnitude of the force (in N) you exert on the ball? (You may ignore the buoyant force.)
Physics
1 answer:
Sunny_sXe [5.5K]3 years ago
5 0

Answer:

P = 1.090\,N

Explanation:

The constant speed means that ball is not experimenting acceleration. This elements is modelled by using the following equation of equilibrium:

\Sigma F = P - W + F_{D}

\Sigma F = P - \rho \cdot V \cdot g + c\cdot v = 0

Now, the exerted force is:

P = \rho \cdot V \cdot g - c\cdot v

The volume of a sphere is:

V = \frac{4\cdot \pi}{3}\cdot R^{3}

V = \frac{4\cdot \pi}{3}\cdot (0.014\,m)^{3}

V = 1.149\times 10^{-5}\,m^{3}

Lastly, the force is calculated:

P = (8910\,\frac{kg}{m^{3}} )\cdot (1.149\cdot 10^{-5}\,m^{3})\cdot (9.81\,\frac{m}{s^{2}} )+(0.950\,\frac{kg}{s})\cdot (0.09\,\frac{m}{s} )

P = 1.090\,N

You might be interested in
Describe the quantum mechanical model of the atom and several observations which support this model.
PIT_PIT [208]

This means that we shouldn't imagine electrons as single objects going around the atom. Instead, all we know is the probability of finding an electron at a particular location. What we end up with is something called an electron cloud. An electron cloud is an area of space in which an electron is likely to be found. It's like a 3-D graph showing the probability of finding the electron at each location in space. Quantum mechanics also tells us that a particle has certain numbers (called quantum numbers) that represent its properties. Just like how materials can be hard or soft, shiny or dull, particles have numbers to describe the properties. These include a particle's orbital quantum numbers, magnetic quantum number, and its spin. No two electrons in an atom can have exactly the same quantum numbers. Orbital quantum numbers tell you what energy level the electron is in. In the Bohr model, this represents how high the orbit is above the nucleus; higher orbits have more energy. The first orbit is n=1, the second is n=2, and so on. The magnetic quantum number is just a number that represents which direction the electron is pointing. The other important quantum mechanical property, called spin, is related to the fact that electrons come in pairs. In each pair, one electron spins one way (with a spin of one half), and the other electron spins the other way (with a spin of negative one half). Two electrons with the same spin cannot exist as a pair. This might seem kind of random, but it has effects in terms of how magnetic material is. Materials that have unpaired electrons are more likely to be magnetic

7 0
3 years ago
What profession is most likely to make use of amphoras and candelas
Monica [59]
Biologists probably
5 0
3 years ago
Suppose I have a vector that is 7 units long and that makes an angle of +30 degrees from the positive x-axis. I want to add to t
Vinil7 [7]

Answer:

sum of these two vectors is 6.06i+3.5j-3.5i+6.06j = 2.56i+9.56j

Explanation:

We have given first vector which has length of 7 units and makes an angle of 30° with positive x-axis

So x component of the vector =7cos30^{\circ}=7\times 0.866=6.06

y component of the vector =7sin30^{\circ}=7\times 0.5=3.5

So vector will be 6.06i+3.5j

Now other vector of length of 7 units and makes an angle of 120° with positive x-axis

So x component of vector  =7cos120^{\circ}=7\times -0.5=-3.5i

y component of the vector =7sin120^{\circ}=7\times 0.866=6.06j

Now sum of these two vectors is 6.06i+3.5j-3.5i+6.06j = 2.56i+9.56j

5 0
3 years ago
A diffraction grating has 500 slits/mm. What is the longest wavelength of light for which there will be a third-order maximum?
Alexxandr [17]

Answer:

The longest wavelength of light  is 666.7 nm

Explanation:

The general form of the grating equation is

mλ = d(sinθi + sinθr)

where;

m is third-order maximum = 3

λ is the wavelength,

d is the slit spacing (m/slit)

θi  is the incident angle

θr is the diffracted angle

Note: at longest wavelength, sinθi + sinθr = 1

λ = d/m

d = 1/500 slits/mm

λ = 1 mm/(500 *3) = 1mm/1500 = 666.7 X 10⁻⁶ mm = 666.7 nm

Therefore, the longest wavelength of light  is 666.7 nm

8 0
3 years ago
Energy is conventionally measured in Calories as well as in joules. One Calorie in nutrition is one kilocalorie, defined as 1 kc
Sergeeva-Olga [200]

Answer:

a) The student must run flight of stairs to lose 1.00 kg of fat 709.5 times.

b) Average power

P(w)= 1062.07 [w]

P(hp)=1.42 [hp]

c) This activity is highly unpractical, because the high amount of repetitions he has to due in order to lose, just 1 Kg of fat.

Explanation:

First, lets consider the required amount of work to move the mass of the student. (considering running stairs just as a vertical movement)

Work:

W= F*d= m*g*d

Where m is the mass of the student, g is gravity (9.8 m/s) and d is the total distance going up the stairs (0.15m *85steps= 12.75m )

W= F*d= m*g*d=85* 9.8*12.75=10620.75 [J]

Converting from Joules to Kcals:

\frac{10620.75}{4186} =2.537 Kcal

Now lets take into account the efficiency of the human body (20%)

2.537 ---> 20%

 x       ---> 100%

x=\frac{2.537*100}{20} =12.685

So the student is consuming 12.685 KCals each time he runs up the stairs.

Now,

1 g --> 9 Kcals

1000 g --> 9000KCals

Burning 1 g of fat, requieres 9 KCals, 1000g burns 9000KCals. So in order to burn a 1Kg of fat:

\frac{9000Kcals}{12.685Kcals} =709.5 times

He must run up the stairs 709.5 times, to burn 1 Kg of fat.

********************

For b) just converting units, taking into account the time lapse. (53103.75 is the 100% of the energy in joules, from converting 12.685Kcals to joules)

Power=\frac{Joules}{Seconds} =\frac{53103.75}{50} =1062.075 [W]\\

P(hp)=\frac{P(w)}{745.7} =\frac{1062.075}{745.7} =1.42[hp]

*****

4 0
3 years ago
Other questions:
  • A typical machine tests the tensile strength of a sheet of material cut into a standard size of 5.00 centimeters wide by 10.0 ce
    12·1 answer
  • a stationary police officer directs radio waves emitted by a radar gun at a vehicle toward the officer. Compared to the emitted
    14·1 answer
  • What happens to the size of the image as the focal length is increased?
    10·1 answer
  • Wich sphere of the earth system includes snowfields ice caps and frozen ground
    10·1 answer
  • How do we know Earth is spinning, not the Sun?
    8·1 answer
  • To determine an epicentral distance scientists consider the arrival times of what wave types
    8·1 answer
  • It’s bungee jumping skydiving and hiking
    14·1 answer
  • Which is true?
    10·1 answer
  • Which force below does the most work? All three displacements are the same. The 10 N force. The 8 N force The 6 N force. They al
    15·1 answer
  • A student has connected two generator/motors together. The student turns the crank 20 times and noticed the other crank only tur
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!