1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Kipish [7]
3 years ago
9

A certain field line diagram illustrates the electric field due to three particles that carry charges 5.0 μC, -3.0 μC, and -2.0

μC. 15 field lines emanate from the positively charged particle. How many field lines terminate on the -3.0 μC particle? How many field lines terminate on the -2.0 μC particle?
Physics
1 answer:
4vir4ik [10]3 years ago
4 0

Answer:

6

Explanation:

Number of lines emanate from + 5 micro coulomb is 15 .

They terminates at negative charges that means at - 3 micro coulomb and - 2 micro Coulomb.

the electric field lines terminates at - 3 micro Coulomb and - 2 micro Coulomb is in the ratio of 3 : 2.

So the lines terminating at - 3 micro coulomb

                                    = \frac{3}{5}\times 15 = 9

So the lines terminating at - 2 micro coulomb

                                    = \frac{2}{5}\times 15 = 6

So, the number of filed lines terminates at - 2 micro Coulomb are 6.

You might be interested in
Consider a 100 g object dropped from a height of 1 m. Assuming no air friction (drag), when will the object hit the ground and a
Katyanochek1 [597]

Answer:

speed and time are Vf = 4.43 m/s and  t = 0.45 s

Explanation:

This is a problem of free fall, we have the equations of kinematics

      Vf² = Vo² + 2g x

As the object is released the initial velocity is zero, let's look at the final velocity with the equation

      Vf = √( 2 g X)

      Vf = √(2 9.8  1)

      Vf = 4.43 m/s

This is the speed with which it reaches the ground

 

Having the final speed we can find the time

      Vf = Vo + g t

       t = Vf / g

       t = 4.43 / 9.8

       t = 0.45 s

This is the time of fall of the body to touch the ground

3 0
3 years ago
Many Amtrak trains can travel at a top speed of 42.0 m/s. Assuming a train maintains that speed for several hours, how many kilo
777dan777 [17]

Answer:

605 km

Explanation:

Hello

the same units of measure should be used, then

Step 1

convert  42 m/s ⇒   km/h

1 km =1000 m

1 h = 36000 sec

42 \frac{m}{s}*\frac{1\ km}{1000\ m}=0.042\ \frac{km}{s}\\ 0.042\ \frac{km}{s}\\

0.042\ \frac{km}{s}*\frac{3600\ s}{1\ h} =151.2 \frac{km}{h}\\ \\Velocity =151.2\ \frac{km}{h}

Step 2

find kilometers traveled after 4  hours

V=\frac{s}{t}\\ \\

V,velocity

s, distance traveled

t. time

now, isolating s

V=\frac{s}{t} \\s=V * t\\

and replacing

s=V * t\\s=151.2\frac{km}{h}*4 hours\\ s=604.8 km\\

S=604.8 Km

Have a great day

4 0
3 years ago
Questlon 20 of 20 Which change to an object would quadruple its kinetic energy?
worty [1.4K]

Answer:Questlon 20 of 20 Which change to an object would quadruple its kinetic energy?

A. Reducing its mass to one-half of its original value

B. Increasing its velocitato twice its original value

C. Reducing its velocity to one-half of its original value O

D. Increasing its mass to twice its original value ​Questlon 20 of 20 Which change to an object would quadruple its kinetic energy?

A. Reducing its mass to one-half of its original value

B. Increasing its velocitato twice its original value

C. Reducing its velocity to one-half of its original value O

D. Increasing its mass to twice its original value ​Questlon 20 of 20 Which change to an object would quadruple its kinetic energy?

A. Reducing its mass to one-half of its original value

B. Increasing its velocitato twice its original value

C. Reducing its velocity to one-half of its original value O

D. Increasing its mass to twice its original value ​Questlon 20 of 20 Which change to an object would quadruple its kinetic energy?

A. Reducing its mass to one-half of its original value

B. Increasing its velocitato twice its original value

C. Reducing its velocity to one-half of its original value O

D. Increasing its mass to twice its original value ​Questlon 20 of 20 Which change to an object would quadruple its kinetic energy?

A. Reducing its mass to one-half of its original value

B. Increasing its velocitato twice its original value

C. Reducing its velocity to one-half of its original value O

D. Increasing its mass to twice its original value ​Questlon 20 of 20 Which change to an object would quadruple its kinetic energy?

A. Reducing its mass to one-half of its original value

B. Increasing its velocitato twice its original value

C. Reducing its velocity to one-half of its original value O

D. Increasing its mass to twice its original value ​Questlon 20 of 20 Which change to an object would quadruple its kinetic energy?

A. Reducing its mass to one-half of its original value

B. Increasing its velocitato twice its original value

C. Reducing its velocity to one-half of its original value O

D. Increasing its mass to twice its original value ​Questlon 20 of 20 Which change to an object would quadruple its kinetic energy?

A. Reducing its mass to one-half of its original value

B. Increasing its velocitato twice its original value

C. Reducing its velocity to one-half of its original value O

D. Increasing its mass to twice its original value ​Questlon 20 of 20 Which change to an object would quadruple its kinetic energy?

A. Reducing its mass to one-half of its original value

B. Increasing its velocitato twice its original value

C. Reducing its velocity to one-half of its original value O

D. Increasing its mass to twice its original value ​Questlon 20 of 20 Which change to an object would quadruple its kinetic energy?

A. Reducing its mass to one-half of its original value

B. Increasing its velocitato twice its original value

C. Reducing its velocity to one-half of its original value O

D. Increasing its mass to twice its original value ​Questlon 20 of 20 Which change to an object would quadruple its kinetic energy?

A. Reducing its mass to one-half of its original value

B. Increasing its velocitato twice its original value

C. Reducing its velocity to one-half of its original value O

D. Increasing its mass to twice its original value ​Questlon 20 of 20 Which change to an object would quadruple its kinetic energy?

A. Reducing its mass to one-half of its original value

B. Increasing its velocitato twice its original value

C. Reducing its velocity to one-half of its original value O

D. Increasing its mass to twice its original value ​Questlon 20 of 20 Which change to an object would quadruple its kinetic energy?

A. Reducing its mass to one-half of its original value

B. Increasing its velocitato twice its original value

C. Reducing its velocity to one-half of its original value O

D. Increasing its mass to twice its original value ​Questlon 20 of 20 Which change to an object would quadruple its kinetic energy?

Explanation:

6 0
3 years ago
Read 2 more answers
Suppose a police officer is 1/2 mile south of an intersection, driving north towards the intersection at 40 mph. At the same tim
blagie [28]

Answer:

75.36 mph

Explanation:

The distance between the other car and the intersection is,

x=x_{0}+V t \\ x=\frac{1}{2}+V t

The distance between the police car and the intersection is,

y=y_{0}+V t

y=\frac{1}{2}-40 t

(Negative sign indicates that he is moving towards the intersection)

Therefore the distance between them is given by,

z^{2}=x^{2}+y^{2}(\text { Using Phythogorous theorem })

z^{2}=\left(\frac{1}{2}+V t\right)^{2}+\left(\frac{1}{2}-40 t\right)^{2} \ldots \ldots \ldots(1)

The rate of change is,

2 z \frac{d z}{d t}=2\left(\frac{1}{2}+V t\right) V+2\left(\frac{1}{2}-40 t\right)(-40)

2 z \frac{d z}{d t}=V+2 V^{2} t-40+3200 t \ldots \ldots \ldots

Now finding z when t=0, from (1) we have

z^{2}=\left(\frac{1}{2}+V(0)\right)^{2}+\left(\frac{1}{2}-40(0)\right)^{2}

z^{2}=\frac{1}{4}+\frac{1}{4}=\frac{1}{2} \\ z=\sqrt{\frac{1}{2}} \approx 0.7071

The officer's radar gun indicates 25 mph pointed at the other car then, \frac{d z}{d t}=25 when t=0, from

From (2) we get

2(0.7071)(25)=V+2 V^{2}(0)-40+3200(0)

2(0.7071)(25)=V+2 V^{2}(0)-40

35.36=V-40

V=35.36+40=75.36

Hence the speed of the car is 75.36 mph

7 0
3 years ago
Air passing over an airplane's wing travels ____________________, and therefore exerts ____________________ pressure than air tr
Aleksandr [31]
<span>c. faster, less

is the answer
</span>
6 0
3 years ago
Read 2 more answers
Other questions:
  • Calculate the required rate of return for Climax Inc., assuming that (1) investors expect a 4.0% rate of inflation in the future
    5·1 answer
  • A 7500-kg rocket blasts off vertically from the launch pad with a constant upward acceleration of 2.25m/s2 and feels no apprecia
    14·1 answer
  • Name three situations in which force is created. Describe the cause of the
    11·2 answers
  • What made the Fertile Crescent a good place for growing crops
    5·2 answers
  • A softball is hit over a third baseman's head with some speed v0 at an angle θ above the horizontal. Immediately after the ball
    5·1 answer
  • A -5.40nC point charge is on the x axis at x = 1.25m . A second point charge Q is on the x axis at -0.625m.
    15·1 answer
  • A vector has components x=6 m and y=8 m. what is its magnitude and direction?
    9·1 answer
  • When does the moon lie between earth and sun
    12·2 answers
  • What is an inexpensive, portable, and common way to assess body fat in the fitness industry?
    5·1 answer
  • A car with a velocity of 15 m/s is accelerated uniformly at the rate of 1.9 m/s2 for 6.8 s. What is its final velocity?
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!