Answer:

Explanation:
For this problem, we need to apply the formulas of constant accelerated motion.
To obtain the boat displacement we need to calculate the displacement because of the river flow and the displacement done because of the boat motor.
for the river:

for the boat:

So the final displacement is given by:

Answer:

Explanation:
- We have to make a hollow sphere of inner radius
and outer radius
.
Then the mass of the material required to make such a sphere would be calculated as:
Total volume of the spherical shell:

And the volume of the hollow space in the sphere:

Therefore the net volume of material required to make the sphere:


- Now let the density of the of the material be
.
<u>Then the mass of the material used is:</u>


Answer:
A) -2N
B) Left
C) -0.5
Explanation:
A) -12 + 10
B) More force is acted on in that direction
C) Net force/Mass (-2/4)
Answer:
- path differnce = 2.18*10^-6
- 1538 lines
Explanation:
- The path difference for the waves that produce the pattern of diffraction, is given by the following formula:
(1)
d: separation between slits = 0.50mm = 0.50*10^-3 m
θ: angle of a diffraction = 0.25°
Then, the path difference is:

- The maximum number of bright lines are calculated by using the following formula:
(2)
m: order of the bright
λ: wavelength = 650nm
The maximum bright is calculated for an angle of 90°:

The maxium number of bright lines are twice the previous result, that is, 1538 lines
Answer:
Tangential speed, v = 2.64 m/s
Explanation:
Given that,
Mass of the puck, m = 0.5 kg
Tension acting in the string, T = 3.5 N
Radius of the circular path, r = 1 m
To find,
The tangential speed of the puck.
Solution,
The centripetal force acting in the string is balanced by the tangential speed of the puck. The expression for the centripetal force is given by :



v = 2.64 m/s
Therefore, the tangential speed of the puck is 2.64 m/s.